
Computational Genomics Tutorial
Release 2019.03

Sebastian Schmeier (https://sschmeier.com)

Jun 01, 2020

CONTENTS

1 Introduction 3
1.1 The workflow . 3
1.2 Learning outcomes . 3

2 Tool installation 5
2.1 Install the conda package manager . 5
2.2 Create environments . 6
2.3 Install software . 6
2.4 General conda commands . 7

3 Quality control 9
3.1 Preface . 9
3.2 Overview . 9
3.3 Learning outcomes . 9
3.4 The data . 9
3.5 The fastq file format . 12
3.6 The QC process . 12
3.7 PhiX genome . 12
3.8 Adapter trimming . 13
3.9 Sickle for dynamic trimming . 13
3.10 Quality assessment of sequencing reads (FastQC) . 14

4 Genome assembly 19
4.1 Preface . 19
4.2 Overview . 19
4.3 Learning outcomes . 19
4.4 Before we start . 19
4.5 Creating a genome assembly . 21
4.6 Assembly quality assessment . 22
4.7 Compare the untrimmed data . 23
4.8 Assemblathon . 23
4.9 Further reading . 24
4.10 Web links . 24

5 Read mapping 25
5.1 Preface . 25
5.2 Overview . 25
5.3 Learning outcomes . 25
5.4 Before we start . 25
5.5 Mapping sequence reads to a reference genome . 27
5.6 BWA . 27
5.7 Bowtie2 (alternative to BWA) . 28
5.8 The sam mapping file-format . 30
5.9 Mapping post-processing . 30
5.10 Mapping statistics . 31

i

5.11 Sub-selecting reads . 33

6 Taxonomic investigation 37
6.1 Preface . 37
6.2 Overview . 37
6.3 Before we start . 37
6.4 Kraken2 . 39
6.5 Centrifuge . 43
6.6 Visualisation (Krona) . 46

7 Variant calling 49
7.1 Preface . 49
7.2 Overview . 49
7.3 Learning outcomes . 49
7.4 Before we start . 49
7.5 Installing necessary software . 49
7.6 Preprocessing . 51
7.7 Calling variants . 51
7.8 Post-processing . 52

8 Genome annotation 57
8.1 Preface . 57
8.2 Overview . 57
8.3 Learning outcomes . 57
8.4 Before we start . 57
8.5 Installing the software . 59
8.6 Assessment of orthologue presence and absence . 59
8.7 Annotation . 60
8.8 Interactive viewing . 60
8.9 Installing IGV . 60
8.10 Assessment of orthologue presence and absence (2) . 61

9 Orthology and Phylogeny 63
9.1 Preface . 63
9.2 Learning outcomes . 63
9.3 Before we start . 63
9.4 Installing the software . 64
9.5 Finding orthologues using BLAST . 64
9.6 Performing an alignment . 65
9.7 Building a phylogeny . 65
9.8 Visualizing the phylogeny . 66

10 Variants-of-interest 67
10.1 Preface . 67
10.2 Overview . 67
10.3 Learning outcomes . 67
10.4 Before we start . 67
10.5 General comments for identifying variants-of-interest . 69
10.6 SnpEff . 69

11 Quick command reference 73
11.1 Shell commands . 73
11.2 General conda commands . 73

12 Coding solutions 75
12.1 QC . 75
12.2 Assembly . 75
12.3 Mapping . 76

ii

13 Downloads 77
13.1 Tools . 77
13.2 Data . 77

Bibliography 83

iii

iv

Computational Genomics Tutorial, Release 2019.03

Attention: There is a new revised release, using data from E. coli to speed the analysis steps up.
The new tutorial can be accessed at https://genomics.sschmeier.com/.

This is an introductory tutorial for learning computational genomics mostly on the Linux command-line.
You will learn how to analyse next-generation sequencing (NGS) data. The data you will be using is
real research data. The final aim is to identify genome variations in evolved lines of wild yeast that can
explain the observed biological phenotypes. Until 2020, Sebastian1 was teaching this material in the
Massey University course Genome Science2.

More information about other bioinformatics material and our past research can be found on the former
webpages of the Schmeier Group3 (https://www.schmeierlab.com).

Note: A online version of this tutorial can be accessed at https://genomics.sschmeier.com.

1 https://www.sschmeier.com
2 https://www.massey.ac.nz/massey/learning/programme-course/course.cfm?course_code=203341
3 https://www.schmeierlab.com

CONTENTS 1

https://genomics.sschmeier.com/
https://www.sschmeier.com
https://www.massey.ac.nz/massey/learning/programme-course/course.cfm?course_code=203341
https://www.schmeierlab.com
https://www.schmeierlab.com
https://genomics.sschmeier.com

Computational Genomics Tutorial, Release 2019.03

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

This is an introductory tutorial for learning genomics mostly on the Linux command-line. Should you
need to refresh your knowledge about either Linux or the command-line, have a look here4.

In this tutorial you will learn how to analyse next-generation sequencing (NGS) data. The data you
will be using is actual research data. The experiment follows a similar strategy as in what is called
an “experimental evolution” experiment [KAWECKI2012], [ZEYL2006]. The final aim is to identify the
genome variations in evolved lines of wild yeast that can explain the observed biological phenotype.

1.1 The workflow

The tutorial workflow is summarised in Fig. 1.1.

1.2 Learning outcomes

During this tutorial you will learn to:

• Check the data quality of an NGS experiment

• Create a genome assembly of the ancestor based on NGS data

• Map NGS reads of evolved lines to the created ancestral reference genome

• Call genome variations/mutations in the evolved lines

• Annotate a newly derived reference genome

• Find variants of interest that may be responsible for the observed evolved phenotype

4 http://linux.sschmeier.com/

3

http://linux.sschmeier.com/

Computational Genomics Tutorial, Release 2019.03

Fig. 1.1: The tutorial will follow this workflow.

4 Chapter 1. Introduction

CHAPTER

TWO

TOOL INSTALLATION

2.1 Install the conda package manager

We will use the package/tool managing system conda7 to install some programs that we will use during
the course. It is not installed by default, thus we need to install it first to be able to use it.

download latest conda installer
curl -O https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh

run the installer
bash Miniconda3-latest-Linux-x86_64.sh

delete the installer after successful run
rm Miniconda3-latest-Linux-x86_64.sh

Note: Should the conda installer download fail. Please find links to alternative locations on the Down-
loads (page 77) page.

2.1.1 Update .bashrc and .zshrc config-files

Before we are able to use conda8 we need to tell our shell where it can find the program. We add the
right path to the conda9 installation to our shell config files:

echo 'export PATH="/home/manager/miniconda3/bin:$PATH"' >> ~/.bashrc
echo 'export PATH="/home/manager/miniconda3/bin:$PATH"' >> ~/.zshrc

Attention: The above assumes that your username is “manager”, which is the default on a Biolinux
install. Replace “manager” with your actual username. Find out with whoami.

So what is actually happening here? We are appending a line to a file (either .bashrc or .zshrc). If we
are starting a new command-line shell, either file gets executed first (depending on which shell you are
using, either bash or zsh shells). What this line does, is to put permanently the directory ~/miniconda3/
bin first on your PATH variable. The PATH variable contains directories in which our computer looks for
installed programs, one directory after the other until the program you requested is found (or not, then
it will complain). Through the addition of the above line we make sure that the program conda can be
found anytime we open a new shell.

Close shell/terminal, re-open new shell/terminal. Now, we should be able to use the conda10 command:
7 http://conda.pydata.org/miniconda.html
8 http://conda.pydata.org/miniconda.html
9 http://conda.pydata.org/miniconda.html

10 http://conda.pydata.org/miniconda.html

5

http://conda.pydata.org/miniconda.html
http://conda.pydata.org/miniconda.html
http://conda.pydata.org/miniconda.html
http://conda.pydata.org/miniconda.html

Computational Genomics Tutorial, Release 2019.03

conda update conda

2.1.2 Installing conda channels to make tools available

Different tools are packaged in what conda11 calls channels. We need to add some channels to make the
bioinformatics and genomics tools available for installation:

Install some conda channels
A channel is where conda looks for packages
conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge

2.2 Create environments

We create a conda12 environment for some tools. This is useful to work reproducible as we can easily
re-create the tool-set with the same version numbers later on.

conda create -n ngs python=3
activate the environment
conda activate ngs

So what is happening when you type conda activate ngs in a shell. The PATH variable (mentioned
above) gets temporarily manipulated and set to:

$ conda activate ngs
Lets look at the content of the PATH variable
(ngs) $ echo $PATH
/home/manager/miniconda3/envs/ngs/bin:/home/manager/miniconda3/bin:/usr/local/bin: ...

Now it will look first in your environment’s bin directory but afterwards in the general conda bin
(/home/manager/miniconda3/bin). So basically everything you install generally with conda (without
being in an environment) is also available to you but gets overshadowed if a similar program is in /home/
manager/miniconda3/envs/ngs/bin and you are in the ngs environment.

2.3 Install software

To install software into the activated environment, one uses the command conda install.

install more tools into the environment
conda install package

Note: To tell if you are in the correct conda environment, look at the command-prompt. Do you see
the name of the environment in round brackets at the very beginning of the prompt, e.g. (ngs)? If not,
activate the ngs environment with conda activate ngs before installing the tools.

11 http://conda.pydata.org/miniconda.html
12 http://conda.pydata.org/miniconda.html

6 Chapter 2. Tool installation

http://conda.pydata.org/miniconda.html
http://conda.pydata.org/miniconda.html

Computational Genomics Tutorial, Release 2019.03

2.4 General conda commands

to search for packages
conda search [package]

To update all packages
conda update --all --yes

List all packages installed
conda list [-n env]

conda list environments
conda env list

create new env
conda create -n [name] package [package] ...

activate env
conda activate [name]

deavtivate env
conda deactivate

2.4. General conda commands 7

Computational Genomics Tutorial, Release 2019.03

8 Chapter 2. Tool installation

CHAPTER

THREE

QUALITY CONTROL

Warning: Since 2020, none of the internal links are functioning. Please use the Dropbox links in the
Downloads (page 77) section.

3.1 Preface

There are many sources of errors that can influence the quality of your sequencing run [ROBASKY2014].
In this quality control section we will use our skill on the command-line interface to deal with the task
of investigating the quality and cleaning sequencing data [KIRCHNER2014].

Note: You will encounter some To-do sections at times. Write the solutions and answers into a text-file.

3.2 Overview

The part of the workflow we will work on in this section can be viewed in Fig. 3.1.

3.3 Learning outcomes

After studying this tutorial you should be able to:

1. Describe the steps involved in pre-processing/cleaning sequencing data.

2. Distinguish between a good and a bad sequencing run.

3. Compute, investigate and evaluate the quality of sequence data from a sequencing experiment.

3.4 The data

First, we are going to download the data we will analyse. Open a shell/terminal.

create a directory you work in
mkdir analysis

change into the directory
cd analysis

download the data
curl -O http://compbio.massey.ac.nz/data/203341/data.tar.gz

(continues on next page)

9

Computational Genomics Tutorial, Release 2019.03

Fig. 3.1: The part of the workflow we will work on in this section marked in red.

10 Chapter 3. Quality control

Computational Genomics Tutorial, Release 2019.03

(continued from previous page)

uncompress it
tar -xvzf data.tar.gz

Note: Should the download fail, download manually from Downloads (page 77).

The data is from a paired-end sequencing run data (see Fig. 3.2) from an Illumina13 MiSeq
[GLENN2011]. Thus, we have two files, one for each end of the read.

Fig. 3.2: Illustration of single-end (SE) versus paired-end (PE) sequencing.

If you need to refresh how Illumina14 paired-end sequencing works have a look at the Illumina technol-
ogy webpage15 and this video16.

Attention: The data we are using is “almost” raw data as it came from the machine. This data
has been post-processed in two ways already. All sequences that were identified as belonging to the
PhiX genome have been removed. This process requires some skills we will learn in later sections.
Illumina17 adapters have been removed as well already! The process is explained below but we are
not going to do it.

13 http://illumina.com
14 http://illumina.com
15 http://www.illumina.com/technology/next-generation-sequencing/paired-end-sequencing_assay.html
16 https://youtu.be/HMyCqWhwB8E

3.4. The data 11

http://illumina.com
http://illumina.com
http://www.illumina.com/technology/next-generation-sequencing/paired-end-sequencing_assay.html
http://www.illumina.com/technology/next-generation-sequencing/paired-end-sequencing_assay.html
https://youtu.be/HMyCqWhwB8E
http://illumina.com

Computational Genomics Tutorial, Release 2019.03

3.4.1 Investigate the data

Make use of your newly developed skills on the command-line to investigate the files in data folder.

Todo:

1. Use the command-line to get some ideas about the file.

2. What kind of files are we dealing with?

3. How many sequence reads are in the file?

4. Assume a genome size of 12MB. Calculate the coverage based on this formula: C = LN / G

• C: Coverage

• G: is the haploid genome length in bp

• L: is the read length in bp (e.g. 2x100 paired-end = 200)

• N: is the number of reads sequenced

3.5 The fastq file format

The data we receive from the sequencing is in fastq format. To remind us what this format entails, we
can revisit the fastq wikipedia-page18!

A useful tool to decode base qualities can be found here19.

Todo: Explain briefly what the quality value represents.

3.6 The QC process

There are a few steps one need to do when getting the raw sequencing data from the sequencing facility:

1. Remove PhiX sequences

2. Adapter trimming

3. Quality trimming of reads

4. Quality assessment

3.7 PhiX genome

PhiX20 is a nontailed bacteriophage with a single-stranded DNA and a genome with 5386 nucleotides.
PhiX is used as a quality and calibration control for sequencing runs21. PhiX is often added at a low
known concentration, spiked in the same lane along with the sample or used as a separate lane. As the
concentration of the genome is known, one can calibrate the instruments. Thus, PhiX genomic sequences
need to be removed before processing your data further as this constitutes a deliberate contamination
[MUKHERJEE2015]. The steps involve mapping all reads to the “known” PhiX genome, and removing
all of those sequence reads from the data.

17 http://illumina.com
18 https://en.wikipedia.org/wiki/FASTQ_format
19 http://broadinstitute.github.io/picard/explain-qualities.html
20 https://en.wikipedia.org/wiki/Phi_X_174
21 http://www.illumina.com/products/by-type/sequencing-kits/cluster-gen-sequencing-reagents/phix-control-v3.html

12 Chapter 3. Quality control

https://en.wikipedia.org/wiki/FASTQ_format
http://broadinstitute.github.io/picard/explain-qualities.html
https://en.wikipedia.org/wiki/Phi_X_174
http://www.illumina.com/products/by-type/sequencing-kits/cluster-gen-sequencing-reagents/phix-control-v3.html

Computational Genomics Tutorial, Release 2019.03

However, your sequencing provider might not have used PhiX, thus you need to read the protocol care-
fully, or just do this step in any case.

Attention: We are not going to do this step here, as this has been already done. Please see the Read
mapping (page 25) section on how to map reads against a reference genome.

3.8 Adapter trimming

The process of sequencing DNA via Illumina22 technology requires the addition of some adapters to the
sequences. These get sequenced as well and need to be removed as they are artificial and do not belong
to the species we try to sequence. Generally speaking adapter trimming takes time.

Attention: The process of how to do this is explained here, however we are not going to do this as
our sequences have been adapter-trimmed already.

First, we need to know the adapter sequences that were used during the sequencing of our samples.
Normally, you should ask your sequencing provider, who should be providing this information to you.
Illumina23 itself provides a document24 that describes the adapters used for their different technologies.
Also the FastQC25 tool, we will be using later on, provides a collection of contaminants and adapters26.

Second, we need a tool that takes a list of adapters and scans each sequence read and removes the
adapters. Install a tool called fastq-mcf27 from the ea-utils suite28 of tools that is able to do this.

install
conda install ea-utils

Using the tool together with a adapter/contaminants list in fasta-file (here denoted as adapters.fa):

fastq-mcf -o cleaned.R1.fq.gz -o cleaned.R2.fq.gz adapaters.fa infile_R1.fastq infile_R2.fastq

• -o: Specifies the output-files. These are fastq-files for forward and reverse read, with adapters
removed.

3.9 Sickle for dynamic trimming

We are using a simple program Sickle29 for dynamic trimming of our sequencing reads to remove bad
quality called bases from our reads.

conda activate ngs
conda install sickle-trim

Now we are going to run the program on our paired-end data:

create a new directory
mkdir trimmed

(continues on next page)

22 http://illumina.com
23 http://illumina.com
24 https://support.illumina.com/downloads/illumina-customer-sequence-letter.html
25 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
26 https://github.com/csf-ngs/fastqc/blob/master/Contaminants/contaminant_list.txt
27 https://github.com/ExpressionAnalysis/ea-utils/blob/wiki/FastqMcf.md
28 https://expressionanalysis.github.io/ea-utils/
29 https://github.com/najoshi/sickle

3.8. Adapter trimming 13

http://illumina.com
http://illumina.com
https://support.illumina.com/downloads/illumina-customer-sequence-letter.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/csf-ngs/fastqc/blob/master/Contaminants/contaminant_list.txt
https://github.com/ExpressionAnalysis/ea-utils/blob/wiki/FastqMcf.md
https://expressionanalysis.github.io/ea-utils/
https://github.com/najoshi/sickle

Computational Genomics Tutorial, Release 2019.03

(continued from previous page)

sickle parameters:
sickle --help

as we are dealing with paired-end data you will be using "sickle pe"
sickle pe --help

run sickle like this on the ancestor:
sickle pe -g -t sanger -f data/ancestor-R1.fastq.gz -r data/ancestor-R2.fastq.gz -o trimmed/
→˓ancestor-R1.trimmed.fastq.gz -p trimmed/ancestor-R2.trimmed.fastq.gz -s trimmed/ancestor-singles.
→˓fastq.gz

Todo:

1. Run Sickle30 also on the evolved samples.

Hint: Should you not get the command togeter to trim the evolved samples, have a look at the coding
solutions at Code: Sickle (page 75). Should you be unable to run Sickle31 at all to trim the data. You can
download the trimmed dataset here32. Unarchive and uncompress the files with tar -xvzf trimmed.
tar.gz.

3.10 Quality assessment of sequencing reads (FastQC)

3.10.1 Installing FastQC

conda activate ngs
conda install fastqc

should now run the program
fastqc --help

FastQC - A high throughput sequence QC analysis tool

SYNOPSIS

fastqc seqfile1 seqfile2 .. seqfileN

fastqc [-o output dir] [--(no)extract] [-f fastq|bam|sam]
[-c contaminant file] seqfile1 .. seqfileN

DESCRIPTION

FastQC reads a set of sequence files and produces from each one a quality
control report consisting of a number of different modules, each one of
which will help to identify a different potential type of problem in your
data.

If no files to process are specified on the command line then the program
will start as an interactive graphical application. If files are provided
on the command line then the program will run with no user interaction

(continues on next page)

30 https://github.com/najoshi/sickle
31 https://github.com/najoshi/sickle
32 http://compbio.massey.ac.nz/data/203341/trimmed.tar.gz

14 Chapter 3. Quality control

https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
http://compbio.massey.ac.nz/data/203341/trimmed.tar.gz

Computational Genomics Tutorial, Release 2019.03

(continued from previous page)

required. In this mode it is suitable for inclusion into a standardised
analysis pipeline.

3.10.2 FastQC manual

FastQC33 is a very simple program to run that provides inforation about sequence read quality.

From the webpage:

“FastQC aims to provide a simple way to do some quality control checks on raw sequence data
coming from high throughput sequencing pipelines. It provides a modular set of analyses
which you can use to give a quick impression of whether your data has any problems of
which you should be aware before doing any further analysis.”

The basic command looks like:

fastqc -o RESULT-DIR INPUT-FILE.[txt/fa/fq] ...

• -o RESULT-DIR is the directory where the result files will be written

• INPUT-FILE.[txt/fa/fq] is the sequence file to analyze, can be more than one file.

Hint: The result will be a HTML page per input file that can be opened in a web-browser.

Hint: The authors of FastQC34 made some nice help pages explaining each of the plots and results you
expect to see here35.

3.10.3 Run FastQC on the untrimmed and trimmed data

Todo:

1. Create a directory for the results –> trimmed-fastqc

2. Run FastQC on all trimmed files.

3. Visit the FastQC36 website and read about sequencing QC reports for good and bad Illumina37

sequencing runs.

4. Compare your results to these examples (Fig. 3.3 to Fig. 3.5) of a particularly bad run (taken from
the FastQC38 website) and write down your observations with regards to your data.

5. What elements in these example figures (Fig. 3.3 to Fig. 3.5) indicate that the example is from a
bad run?

Hint: Should you not get it right, try the commands in Code: FastQC (page 75).

33 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
34 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
35 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/
36 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
37 http://illumina.com
38 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

3.10. Quality assessment of sequencing reads (FastQC) 15

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://illumina.com
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Computational Genomics Tutorial, Release 2019.03

Fig. 3.3: Quality score across bases.

16 Chapter 3. Quality control

Computational Genomics Tutorial, Release 2019.03

Fig. 3.4: Quality per tile.

3.10. Quality assessment of sequencing reads (FastQC) 17

Computational Genomics Tutorial, Release 2019.03

Fig. 3.5: GC distribution over all sequences.

18 Chapter 3. Quality control

CHAPTER

FOUR

GENOME ASSEMBLY

4.1 Preface

In this section we will use our skill on the command-line interface to create a genome assembly from
sequencing data.

Note: You will encounter some To-do sections at times. Write the solutions and answers into a text-file.

4.2 Overview

The part of the workflow we will work on in this section can be viewed in Fig. 4.1.

4.3 Learning outcomes

After studying this tutorial you should be able to:

1. Compute and interpret a whole genome assembly.

2. Judge the quality of a genome assembly.

4.4 Before we start

Lets see how our directory structure looks so far:

cd ~/analysis
ls -1F

data/
trimmed/
trimmed-fastqc/

4.4.1 Subsampling reads

Due to the size of the data sets you may find that the assembly takes a lot of time to complete, especially
on older hardware. To mitigate this problem we can randomly select a subset of sequences we are going
to use at this stage of the tutorial. To do this we will install another program:

conda activate ngs
conda install seqtk

19

Computational Genomics Tutorial, Release 2019.03

Fig. 4.1: The part of the workflow we will work on in this section marked in red.

20 Chapter 4. Genome assembly

Computational Genomics Tutorial, Release 2019.03

Now that seqtk has been installed, we are going to sample 10% of the original reads:

change directory
cd ~/analysis
create directory
mkdir sampled

sub sample reads
seqtk sample -s11 trimmed/ancestor-R1.trimmed.fastq.gz 0.1 | gzip > sampled/ancestor-R1.trimmed.
→˓fastq.gz
seqtk sample -s11 trimmed/ancestor-R2.trimmed.fastq.gz 0.1 | gzip > sampled/ancestor-R2.trimmed.
→˓fastq.gz

In the commands below you need to change the input directory from trimmed/ to sampled/.

Note: The -s options needs to be the same value for file 1 and file 2 to samples the reads that belong to
each other. It specified the seed value for the random number generator.

Note: It should be noted that by reducing the amount of reads that go into the assembly, we are loosing
information that could otherwise be used to make the assembly. Thus, the assembly will be likely “much”
worse than when using the complete dataset.

4.5 Creating a genome assembly

We want to create a genome assembly for our ancestor. We are going to use the quality trimmed forward
and backward DNA sequences and use a program called SPAdes43 to build a genome assembly.

Todo:

1. Discuss briefly why we are using the ancestral sequences to create a reference genome as opposed
to the evolved line.

4.5.1 Installing the software

We are going to use a program called SPAdes44 fo assembling our genome. In a recent evaluation of
assembly software, SPAdes45 was found to be a good choice for fungal genomes [ABBAS2014]. It is also
simple to install and use.

conda activate ngs
conda install spades

4.5.2 SPAdes usage

change to your analysis root folder
cd ~/analysis

first create a output directory for the assemblies

(continues on next page)

43 http://bioinf.spbau.ru/spades
44 http://bioinf.spbau.ru/spades
45 http://bioinf.spbau.ru/spades

4.5. Creating a genome assembly 21

http://bioinf.spbau.ru/spades
http://bioinf.spbau.ru/spades
http://bioinf.spbau.ru/spades

Computational Genomics Tutorial, Release 2019.03

(continued from previous page)

mkdir assembly

to get a help for spades and an overview of the parameter type:
spades.py -h

The two files we need to submit to SPAdes46 are two paired-end read files.

spades.py -o assembly/spades-default/ -1 trimmed/ancestor-R1.trimmed.fastq.gz -2 trimmed/ancestor-
→˓R2.trimmed.fastq.gz

Todo:

1. Run SPAdes47 with default parameters on the ancestor

2. Read in the SPAdes48 manual about about assembling with 2x150bp reads

3. Run SPAdes49 a second time but use the options suggested at the SPAdes50 manual section 3.451 for
assembling 2x150bp paired-end reads (are fungi multicellular?). Use a different output directory
assembly/spades-150 for this run.

Hint: Should you not get it right, try the commands in Code: SPAdes assembly (trimmed data) (page 75).

4.6 Assembly quality assessment

4.6.1 Assembly statistics

Quast52 (QUality ASsesment Tool) [GUREVICH2013], evaluates genome assemblies by computing vari-
ous metrics, including:

• N50: length for which the collection of all contigs of that length or longer covers at least 50% of
assembly length

• NG50: where length of the reference genome is being covered

• NA50 and NGA50: where aligned blocks instead of contigs are taken

• missassemblies: misassembled and unaligned contigs or contigs bases

• genes and operons covered

It is easy with Quast53 to compare these measures among several assemblies. The program can be used
on their website54.

conda install quast

Run Quast55 with both assembly scaffolds.fasta files to compare the results.

46 http://bioinf.spbau.ru/spades
47 http://bioinf.spbau.ru/spades
48 http://bioinf.spbau.ru/spades
49 http://bioinf.spbau.ru/spades
50 http://bioinf.spbau.ru/spades
51 http://spades.bioinf.spbau.ru/release3.9.1/manual.html#sec3.4
52 http://quast.bioinf.spbau.ru/
53 http://quast.bioinf.spbau.ru/
54 http://quast.bioinf.spbau.ru/
55 http://quast.bioinf.spbau.ru/

22 Chapter 4. Genome assembly

http://bioinf.spbau.ru/spades
http://bioinf.spbau.ru/spades
http://bioinf.spbau.ru/spades
http://bioinf.spbau.ru/spades
http://bioinf.spbau.ru/spades
http://spades.bioinf.spbau.ru/release3.9.1/manual.html#sec3.4
http://quast.bioinf.spbau.ru/
http://quast.bioinf.spbau.ru/
http://quast.bioinf.spbau.ru/
http://quast.bioinf.spbau.ru/

Computational Genomics Tutorial, Release 2019.03

Note: Should you be unable to run SPAdes56 on the data, you can manually download the assembly
from Downloads (page 77). Unarchive and uncompress the files with tar -xvzf assembly.tar.gz.

quast -o assembly/quast assembly/spades-default/scaffolds.fasta assembly/spades-150/scaffolds.fasta

Todo:

1. Compare the results of Quast57 with regards to the two different assemblies.

2. Which one do you prefer and why?

4.7 Compare the untrimmed data

Todo:

1. To see if our trimming procedure has an influence on our assembly, run the same command you
used on the trimmed data on the original untrimmed data.

2. Run Quast58 on the assembly and compare the statistics to the one derived for the trimmed data
set. Write down your observations.

Hint: Should you not get it right, try the commands in Code: SPAdes assembly (original data) (page 75).

4.8 Assemblathon

Todo: Now that you know the basics for assembling a genome and judging their quality, play with the
SPAdes59 parameters and the trimmed data to create the best assembly possible. We will compare the
assemblies to find out who created the best one.

Todo:

1. Once you have your final assembly, rename your assembly directory int spades_final, e.g. mv
assembly/spades-default assembly/spades_final.

2. Write down in your notes the command used to create your final assembly.

3. Write down in your notes the assembly statistics derived through Quast60

56 http://bioinf.spbau.ru/spades
57 http://quast.bioinf.spbau.ru/
58 http://quast.bioinf.spbau.ru/
59 http://bioinf.spbau.ru/spades
60 http://quast.bioinf.spbau.ru/

4.7. Compare the untrimmed data 23

http://bioinf.spbau.ru/spades
http://quast.bioinf.spbau.ru/
http://quast.bioinf.spbau.ru/
http://bioinf.spbau.ru/spades
http://quast.bioinf.spbau.ru/

Computational Genomics Tutorial, Release 2019.03

4.9 Further reading

4.9.1 Background on Genome Assemblies

• How to apply de Bruijn graphs to genome assembly. [COMPEAU2011]

• Sequence assembly demystified. [NAGARAJAN2013]

4.9.2 Evaluation of Genome Assembly Software

• GAGE: A critical evaluation of genome assemblies and assembly algorithms. [SALZBERG2012]

• Assessment of de novo assemblers for draft genomes: a case study with fungal genomes.
[ABBAS2014]

4.10 Web links

• Lectures for this topic: Genome Assembly: An Introduction61

• SPAdes62

• Quast63

• Bandage64 (Bioinformatics Application for Navigating De novo Assembly Graphs Easily) is a pro-
gram that visualizes a genome assembly as a graph [WICK2015].

61 https://dx.doi.org/10.6084/m9.figshare.2972323.v1
62 http://bioinf.spbau.ru/spades
63 http://quast.bioinf.spbau.ru/
64 https://rrwick.github.io/Bandage/

24 Chapter 4. Genome assembly

https://dx.doi.org/10.6084/m9.figshare.2972323.v1
http://bioinf.spbau.ru/spades
http://quast.bioinf.spbau.ru/
https://rrwick.github.io/Bandage/

CHAPTER

FIVE

READMAPPING

5.1 Preface

In this section we will use our skill on the command-line interface to map our reads from the evolved
line to our ancestral reference genome.

Note: You will encounter some To-do sections at times. Write the solutions and answers into a text-file.

5.2 Overview

The part of the workflow we will work on in this section can be viewed in Fig. 5.1.

5.3 Learning outcomes

After studying this section of the tutorial you should be able to:

1. Explain the process of sequence read mapping.

2. Use bioinformatics tools to map sequencing reads to a reference genome.

3. Filter mapped reads based on quality.

5.4 Before we start

Lets see how our directory structure looks so far:

cd ~/analysis
create a mapping result directory
mkdir mappings
ls -1F

assembly/
data/
mappings/
(sampled/)
trimmed/
trimmed-fastqc/

25

Computational Genomics Tutorial, Release 2019.03

Fig. 5.1: The part of the workflow we will work on in this section marked in red.

26 Chapter 5. Read mapping

Computational Genomics Tutorial, Release 2019.03

Attention: If you sampled reads randomly for the assembly tutorial in the last section, please go
and download first the assembly on the full data set. This can be found under Downloads (page 77).
Unarchive and uncompress the files with tar -xvzf assembly.tar.gz.

5.5 Mapping sequence reads to a reference genome

We want to map the sequencing reads to the ancestral reference genome we created in the section
Genome assembly (page 19). We are going to use the quality trimmed forward and backward DNA
sequences of the evolved line and use a program called BWA71 to map the reads.

Todo:

1. Discuss briefly why we are using the ancestral genome as a reference genome as opposed to a
genome for the evolved line.

5.5.1 Installing the software

We are going to use a program called BWA72 to map our reads to our genome.

It is simple to install and use.

conda activate ngs
conda install bedtools samtools bwa

5.6 BWA

5.6.1 Overview

BWA73 is a short read aligner, that can take a reference genome and map single- or paired-end data to
it [LI2009]. It requires an indexing step in which one supplies the reference genome and BWA74 will
create an index that in the subsequent steps will be used for aligning the reads to the reference genome.
The general command structure of the BWA75 tools we are going to use are shown below:

bwa index help
bwa index

indexing
bwa index path/to/reference-genome.fa

bwa mem help
bwa mem

single-end mapping, general command structure, adjust to your case
bwa mem path/to/reference-genome.fa path/to/reads.fq.gz > path/to/aln-se.sam

paired-end mapping, general command structure, adjust to your case
bwa mem path/to/reference-genome.fa path/to/read1.fq.gz path/to/read2.fq.gz > path/to/aln-pe.sam

71 http://bio-bwa.sourceforge.net/
72 http://bio-bwa.sourceforge.net/
73 http://bio-bwa.sourceforge.net/
74 http://bio-bwa.sourceforge.net/
75 http://bio-bwa.sourceforge.net/

5.5. Mapping sequence reads to a reference genome 27

http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/

Computational Genomics Tutorial, Release 2019.03

5.6.2 Creating a reference index for mapping

Todo: Create an BWA76 index for our reference genome assembly. Attention! Remember which file you
need to submit to BWA77.

Hint: Should you not get it right, try the commands in Code: BWA indexing (page 76).

Note: Should you be unable to run BWA78 indexing on the data, you can download the index from
Downloads (page 77). Unarchive and uncompress the files with tar -xvzf bwa-index.tar.gz.

5.6.3 Mapping reads in a paired-end manner

Now that we have created our index, it is time to map the filtered and trimmed sequencing reads of our
evolved line to the reference genome.

Todo: Use the correct bwa mem command structure from above and map the reads of the evolved line to
the reference genome.

Hint: Should you not get it right, try the commands in Code: BWA mapping (page 76).

5.7 Bowtie2 (alternative to BWA)

Attention: If the mapping did not succeed with BWA79. We can use the aligner Bowtie280 explained
in this section. If the mapping with BWA81 did work, you can jump this section. You can jump straight
ahead to Section 5.8.

Install with:

conda install bowtie2

5.7.1 Overview

Bowtie282 is a short read aligner, that can take a reference genome and map single- or paired-end data
to it [TRAPNELL2009]. It requires an indexing step in which one supplies the reference genome and
Bowtie283 will create an index that in the subsequent steps will be used for aligning the reads to the
reference genome. The general command structure of the Bowtie284 tools we are going to use are shown
below:

76 http://bio-bwa.sourceforge.net/
77 http://bio-bwa.sourceforge.net/
78 http://bio-bwa.sourceforge.net/
79 http://bio-bwa.sourceforge.net/
80 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
81 http://bio-bwa.sourceforge.net/
82 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
83 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
84 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

28 Chapter 5. Read mapping

http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bio-bwa.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Computational Genomics Tutorial, Release 2019.03

bowtie2 help
bowtie2-build

indexing
bowtie2-build genome.fasta /path/to/index/prefix

paired-end mapping
bowtie2 -X 1000 -x /path/to/index/prefix -1 read1.fq.gz -2 read2.fq.gz -S aln-pe.sam

• -X: Adjust the maximum fragment size (length of paired-end alignments + insert size) to 1000bp.
This might be useful if you do not know the exact insert size of your data. The Bowtie285 default
is set to 500 which is often considered too short86.

5.7.2 Creating a reference index for mapping

Todo: Create an Bowtie287 index for our reference genome assembly. Attention! Remember which file
you need to submit to Bowtie288.

Hint: Should you not get it right, try the commands in Code: Bowtie2 indexing (page 76).

Note: Should you be unable to run Bowtie289 indexing on the data, you can download the index from
Downloads (page 77). Unarchive and uncompress the files with tar -xvzf bowtie2-index.tar.gz.

5.7.3 Mapping reads in a paired-end manner

Now that we have created our index, it is time to map the filtered and trimmed sequencing reads of our
evolved line to the reference genome.

Todo: Use the correct bowtie2 command structure from above and map the reads of the evolved line to
the reference genome.

Hint: Should you not get it right, try the commands in Code: Bowtie2 mapping (page 76).

Note: Bowtie290 does give very cryptic error messages without telling much why it did not want to run.
The most likely reason is that you specified the paths to the files and result file wrongly. Check this first.
Use tab completion a lot!

85 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
86 http://lab.loman.net/2013/05/02/use-x-with-bowtie2-to-set-minimum-and-maximum-insert-sizes-for-nextera-libraries/
87 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
88 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
89 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
90 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

5.7. Bowtie2 (alternative to BWA) 29

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://lab.loman.net/2013/05/02/use-x-with-bowtie2-to-set-minimum-and-maximum-insert-sizes-for-nextera-libraries/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Computational Genomics Tutorial, Release 2019.03

5.8 The sam mapping file-format

Bowtie291 and BWA92 will produce a mapping file in sam-format. Have a look into the sam-file that
was created by either program. A quick overview of the sam-format can be found here93 and even more
information can be found here94. Briefly, first there are a lot of header lines. Then, for each read, that
mapped to the reference, there is one line.

The columns of such a line in the mapping file are described in Table 5.1.

Table 5.1: The sam-file format fields.
Col Field Description
1 QNAME Query (pair) NAME
2 FLAG bitwise FLAG
3 RNAME Reference sequence NAME
4 POS 1-based leftmost POSition/coordinate of clipped sequence
5 MAPQ MAPping Quality (Phred-scaled)
6 CIAGR extended CIGAR string
7 MRNM Mate Reference sequence NaMe (‘=’ if same as RNAME)
8 MPOS 1-based Mate POSition
9 ISIZE Inferred insert SIZE
10 SEQ query SEQuence on the same strand as the reference
11 QUAL query QUALity (ASCII-33 gives the Phred base quality)
12 OPT variable OPTional fields in the format TAG:VTYPE:VALUE

One line of a mapped read can be seen here:

M02810:197:000000000-AV55U:1:1101:10000:11540 83 NODE_1_length_1419525_cov_15.3898 ␣
→˓607378 60 151M = 607100 -429 ␣
→˓TATGGTATCACTTATGGTATCACTTATGGCTATCACTAATGGCTATCACTTATGGTATCACTTATGACTATCAGACGTTATTACTATCAGACGATAACTATCAGACTTTATTACTATCACTTTCATATTACCCACTATCATCCCTTCTTTA␣
→˓FHGHHHHHGGGHHHHHHHHHHHHHHHHHHGHHHHHHHHHHHGHHHHHGHHHHHHHHGDHHHHHHHHGHHHHGHHHGHHHHHHFHHHHGHHHHIHHHHHHHHHHHHHHHHHHHGHHHHHGHGHHHHHHHHEGGGGGGGGGFBCFFFFCCCCC␣
→˓NM:i:0 MD:Z:151 AS:i:151 XS:i:0

It basically defines, the read and the position in the reference genome where the read mapped and a
quality of the map.

5.9 Mapping post-processing

5.9.1 Fix mates and compress

Because aligners can sometimes leave unusual SAM flag95 information on SAM records, it is helpful when
working with many tools to first clean up read pairing information and flags with SAMtools96. We are
going to produce also compressed bam output for efficient storing of and access to the mapped reads.
Note, samtools fixmate expects name-sorted input files, which we can achieve with samtools sort -n.

samtools sort -n -O sam mappings/evolved-6.sam | samtools fixmate -m -O bam - mappings/evolved-6.
→˓fixmate.bam

• -m: Add ms (mate score) tags. These are used by markdup (below) to select the best reads to keep.

• -O bam: specifies that we want compressed bam output from fixmate

91 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
92 http://bio-bwa.sourceforge.net/
93 http://bio-bwa.sourceforge.net/bwa.shtml#4
94 http://samtools.github.io/hts-specs/SAMv1.pdf
95 http://bio-bwa.sourceforge.net/bwa.shtml#4
96 http://samtools.sourceforge.net/

30 Chapter 5. Read mapping

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/bwa.shtml#4
http://samtools.github.io/hts-specs/SAMv1.pdf
http://bio-bwa.sourceforge.net/bwa.shtml#4
http://samtools.sourceforge.net/

Computational Genomics Tutorial, Release 2019.03

Attention: The step of sam to bam-file conversion might take a few minutes to finish, depending on
how big your mapping file is.

We will be using the SAM flag97 information later below to extract specific alignments.

Hint: A very useful tools to explain flags can be found here98.

Once we have bam-file, we can also delete the original sam-file as it requires too much space.

rm mappings/evolved-6.sam

5.9.2 Sorting

We are going to use SAMtools99 again to sort the bam-file into coordinate order:

convert to bam file and sort
samtools sort -O bam -o mappings/evolved-6.sorted.bam mappings/evolved-6.fixmate.bam

• -o: specifies the name of the output file.

• -O bam: specifies that the output will be bam-format

5.9.3 Remove duplicates

In this step we remove duplicate reads. The main purpose of removing duplicates is to mitigate the
effects of PCR amplification bias introduced during library construction. It should be noted that this
step is not always recommended. It depends on the research question. In SNP calling it is a good idea
to remove duplicates, as the statistics used in the tools that call SNPs sub-sequently expect this (most
tools anyways). However, for other research questions that use mapping, you might not want to remove
duplicates, e.g. RNA-seq.

samtools markdup -r -S mappings/evolved-6.sorted.bam mappings/evolved-6.sorted.dedup.bam

Todo: Figure out what “PCR amplification bias” means.

Note: Should you be unable to do the post-processing steps, you can download the mapped data from
Downloads (page 77).

5.10 Mapping statistics

5.10.1 Stats with SAMtools

Lets get an mapping overview:

samtools flagstat mappings/evolved-6.sorted.dedup.bam

97 http://bio-bwa.sourceforge.net/bwa.shtml#4
98 http://broadinstitute.github.io/picard/explain-flags.html
99 http://samtools.sourceforge.net/

5.10. Mapping statistics 31

http://bio-bwa.sourceforge.net/bwa.shtml#4
http://broadinstitute.github.io/picard/explain-flags.html
http://samtools.sourceforge.net/

Computational Genomics Tutorial, Release 2019.03

Todo: Look at the mapping statistics and understand their meaning100. Discuss your results. Explain
why we may find mapped reads that have their mate mapped to a different chromosome/contig? Can
they be used for something?

For the sorted bam-file we can get read depth for at all positions of the reference genome, e.g. how many
reads are overlapping the genomic position.

samtools depth mappings/evolved-6.sorted.dedup.bam | gzip > mappings/evolved-6.depth.txt.gz

Todo: Extract the depth values for contig 20 and load the data into R, calculate some statistics of our
scaffold.

zcat mappings/evolved-6.depth.txt.gz | egrep '^NODE_20_' | gzip > mappings/NODE_20.depth.txt.gz

Now we quickly use some R101 to make a coverage plot for contig NODE20. Open a R102 shell by typing
R on the command-line of the shell.

x <- read.table('mappings/NODE_20.depth.txt.gz', sep='\t', header=FALSE, strip.white=TRUE)

Look at the beginning of x
head(x)

calculate average depth
mean(x[,3])
std dev
sqrt(var(x[,3]))

mark areas that have a coverage below 20 in red
plot(x[,2], x[,3], col = ifelse(x[,3] < 20,'red','black'), pch=19, xlab='postion', ylab='coverage')

to save a plot
png('mappings/covNODE20.png', width = 1200, height = 500)
plot(x[,2], x[,3], col = ifelse(x[,3] < 20,'red','black'), pch=19, xlab='postion', ylab='coverage')
dev.off()

The result plot will be looking similar to the one in Fig. 5.2

Todo: Look at the created plot. Explain why it makes sense that you find relatively bad coverage at the
beginning and the end of the contig.

5.10.2 Stats with QualiMap

For a more in depth analysis of the mappings, one can use QualiMap103 [OKO2015].

QualiMap104 examines sequencing alignment data in SAM/BAM files according to the features of the
mapped reads and provides an overall view of the data that helps to the detect biases in the sequencing
and/or mapping of the data and eases decision-making for further analysis.

Installation:
100 https://www.biostars.org/p/12475/
101 https://www.r-project.org/
102 https://www.r-project.org/
103 http://qualimap.bioinfo.cipf.es/
104 http://qualimap.bioinfo.cipf.es/

32 Chapter 5. Read mapping

https://www.biostars.org/p/12475/
https://www.r-project.org/
https://www.r-project.org/
http://qualimap.bioinfo.cipf.es/
http://qualimap.bioinfo.cipf.es/

Computational Genomics Tutorial, Release 2019.03

Fig. 5.2: A example coverage plot for a contig with highlighted in red regions with a coverage below 20
reads.

conda install qualimap

Run QualiMap105 with:

qualimap bamqc -bam mappings/evolved-6.sorted.dedup.bam

This will create a report in the mapping folder. See this webpage106 to get help on the sections in the
report.

Todo: Install QualiMap107 and investigate the mapping of the evolved sample. Write down your obser-
vations.

5.11 Sub-selecting reads

It is important to remember that the mapping commands we used above, without additional parameters
to sub-select specific alignments (e.g. for Bowtie2108 there are options like --no-mixed, which suppresses
unpaired alignments for paired reads or --no-discordant, which suppresses discordant alignments for
paired reads, etc.), are going to output all reads, including unmapped reads, multi-mapping reads,
unpaired reads, discordant read pairs, etc. in one file. We can sub-select from the output reads we
want to analyse further using SAMtools109.

Todo: Explain what concordant and discordant read pairs are? Look at the Bowtie2110 manual.

5.11.1 Concordant reads

We can select read-pair that have been mapped in a correct manner (same chromosome/contig, correct
orientation to each other, distance between reads is not stupid).

105 http://qualimap.bioinfo.cipf.es/
106 http://qualimap.bioinfo.cipf.es/doc_html/analysis.html#output
107 http://qualimap.bioinfo.cipf.es/
108 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
109 http://samtools.sourceforge.net/
110 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

5.11. Sub-selecting reads 33

http://qualimap.bioinfo.cipf.es/
http://qualimap.bioinfo.cipf.es/doc_html/analysis.html#output
http://qualimap.bioinfo.cipf.es/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://samtools.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Computational Genomics Tutorial, Release 2019.03

samtools view -h -b -f 3 mappings/evolved-6.sorted.dedup.bam > mappings/evolved-6.sorted.dedup.
→˓concordant.bam

• -h: Include the sam header

• -b: Output will be bam-format

• -f 3: Only extract correctly paired reads. -f extracts alignments with the specified SAM flag111

set.

Todo: Our final aim is to identify variants. For a particular class of variants, it is not the best idea to
only focus on concordant reads. Why is that?

5.11.2 Quality-based sub-selection

In this section we want to sub-select reads based on the quality of the mapping. It seems a reasonable
idea to only keep good mapping reads. As the SAM-format contains at column 5 the 𝑀𝐴𝑃𝑄 value,
which we established earlier is the “MAPping Quality” in Phred-scaled, this seems easily achieved. The
formula to calculate the 𝑀𝐴𝑃𝑄 value is: 𝑀𝐴𝑃𝑄 = −10 * 𝑙𝑜𝑔10(𝑝), where 𝑝 is the probability that the
read is mapped wrongly. However, there is a problem! While the MAPQ information would be very
helpful indeed, the way that various tools implement this value differs. A good overview can be
found here112. Bottom-line is that we need to be aware that different tools use this value in different
ways and the it is good to know the information that is encoded in the value. Once you dig deeper into
the mechanics of the 𝑀𝐴𝑃𝑄 implementation it becomes clear that this is not an easy topic. If you want
to know more about the 𝑀𝐴𝑃𝑄 topic, please follow the link above.

For the sake of going forward, we will sub-select reads with at least medium quality as defined by
Bowtie2113:

samtools view -h -b -q 20 mappings/evolved-6.sorted.dedup.bam > mappings/evolved-6.sorted.dedup.q20.
→˓bam

• -h: Include the sam header

• -q 20: Only extract reads with mapping quality >= 20

Hint: I will repeat here a recommendation given at the source link114 above, as it is a good one: If you
unsure what 𝑀𝐴𝑃𝑄 scoring scheme is being used in your own data then you can plot out the 𝑀𝐴𝑃𝑄
distribution in a BAM file using programs like the mentioned QualiMap115 or similar programs. This will
at least show you the range and frequency with which different 𝑀𝐴𝑃𝑄 values appear and may help
identify a suitable threshold you may want to use.

5.11.3 Unmapped reads

We could decide to use Kraken2116 like in section Taxonomic investigation (page 37) to classify all un-
mapped sequence reads and identify the species they are coming from and test for contamination.

Lets see how we can get the unmapped portion of the reads from the bam-file:
111 http://bio-bwa.sourceforge.net/bwa.shtml#4
112 https://sequencing.qcfail.com/articles/mapq-values-are-really-useful-but-their-implementation-is-a-mess/
113 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
114 https://sequencing.qcfail.com/articles/mapq-values-are-really-useful-but-their-implementation-is-a-mess/
115 http://qualimap.bioinfo.cipf.es/
116 https://www.ccb.jhu.edu/software/kraken2/

34 Chapter 5. Read mapping

http://bio-bwa.sourceforge.net/bwa.shtml#4
https://sequencing.qcfail.com/articles/mapq-values-are-really-useful-but-their-implementation-is-a-mess/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://sequencing.qcfail.com/articles/mapq-values-are-really-useful-but-their-implementation-is-a-mess/
http://qualimap.bioinfo.cipf.es/
https://www.ccb.jhu.edu/software/kraken2/

Computational Genomics Tutorial, Release 2019.03

samtools view -b -f 4 mappings/evolved-6.sorted.dedup.bam > mappings/evolved-6.sorted.unmapped.bam

count them
samtools view -c mappings/evolved-6.sorted.unmapped.bam

• -b: indicates that the output is BAM.

• -f INT: only include reads with this SAM flag117 set. You can also use the command samtools
flags to get an overview of the flags.

• -c: count the reads

Lets extract the fastq sequence of the unmapped reads for read1 and read2.

bamToFastq -i mappings/evolved-6.sorted.unmapped.bam -fq mappings/evolved-6.sorted.unmapped.R1.
→˓fastq -fq2 mappings/evolved-6.sorted.unmapped.R2.fastq

117 http://bio-bwa.sourceforge.net/bwa.shtml#4

5.11. Sub-selecting reads 35

http://bio-bwa.sourceforge.net/bwa.shtml#4

Computational Genomics Tutorial, Release 2019.03

36 Chapter 5. Read mapping

CHAPTER

SIX

TAXONOMIC INVESTIGATION

Warning: Since 2020, none of the internal links are functioning. Please use the Dropbox links in the
Downloads (page 77) section.

6.1 Preface

We want to investigate if there are sequences of other species in our collection of sequenced DNA pieces.
We hope that most of them are from our species that we try to study, i.e. the DNA that we have extracted
and amplified. This might be a way of quality control, e.g. have the samples been contaminated? Lets
investigate if we find sequences from other species in our sequence set.

We will use the tool Kraken2121 to assign taxonomic classifications to our sequence reads. Let us see if
we can id some sequences from other species.

Note: You will encounter some To-do sections at times. Write the solutions and answers into a text-file.

6.2 Overview

The part of the workflow we will work on in this section can be viewed in Fig. 6.1.

6.3 Before we start

Lets see how our directory structure looks so far:

cd ~/analysis
ls -1F

assembly/
data/
mappings/
trimmed/
trimmed-fastqc/

121 https://www.ccb.jhu.edu/software/kraken2/

37

https://www.ccb.jhu.edu/software/kraken2/

Computational Genomics Tutorial, Release 2019.03

Fig. 6.1: The part of the workflow we will work on in this section marked in red.

38 Chapter 6. Taxonomic investigation

Computational Genomics Tutorial, Release 2019.03

6.4 Kraken2

We will be using a tool called Kraken2122 [WOOD2014]. This tool uses k-mers to assign a taxonomic
labels in form of NCBI Taxonomy123 to the sequence (if possible). The taxonomic label is assigned based
on similar k-mer content of the sequence in question to the k-mer content of reference genome sequence.
The result is a classification of the sequence in question to the most likely taxonomic label. If the k-mer
content is not similar to any genomic sequence in the database used, it will not assign any taxonomic
label.

6.4.1 Installation

Use conda in the same fashion as before to install Kraken2124. However, we are going to install kraken
into its own environment:

conda create --yes -n kraken kraken2 bracken
conda activate kraken

Now we create a directory where we are going to do the analysis and we will change into that directory
too.

make sure you are in your analysis root folder
cd ~/analysis

create dir
mkdir kraken
cd kraken

Now we need to create or download a Kraken2125 database that can be used to assign the taxonomic
labels to sequences. We opt for downloading the pre-build “minikraken2” database from the Kraken2126

website:

curl -O ftp://ftp.ccb.jhu.edu/pub/data/kraken2_dbs/minikraken2_v2_8GB_201904_UPDATE.tgz

alternatively we can use wget
wget ftp://ftp.ccb.jhu.edu/pub/data/kraken2_dbs/minikraken2_v2_8GB_201904_UPDATE.tgz

once the download is finished, we need to extract the archive content:
tar -xvzf minikraken2_v2_8GB_201904_UPDATE.tgz

Attention: Should the download fail. Please find links to alternative locations on the Downloads
(page 77) page.

Note: The “minikraken2” database was created from bacteria, viral and archaea sequences. What are
the implications for us when we are trying to classify our sequences?

122 https://www.ccb.jhu.edu/software/kraken2/
123 https://www.ncbi.nlm.nih.gov/taxonomy
124 https://www.ccb.jhu.edu/software/kraken2/
125 https://www.ccb.jhu.edu/software/kraken2/
126 https://www.ccb.jhu.edu/software/kraken2/

6.4. Kraken2 39

https://www.ccb.jhu.edu/software/kraken2/
https://www.ncbi.nlm.nih.gov/taxonomy
https://www.ccb.jhu.edu/software/kraken2/
https://www.ccb.jhu.edu/software/kraken2/
https://www.ccb.jhu.edu/software/kraken2/

Computational Genomics Tutorial, Release 2019.03

6.4.2 Usage

Now that we have installed Kraken2127 and downloaded and extracted the minikraken2 database, we
can attempt to investigate the sequences we got back from the sequencing provider for other species as
the one it should contain. We call the Kraken2128 tool and specify the database and fasta-file with the
sequences it should use. The general command structure looks like this:

kraken2 --use-names --threads 4 --db PATH_TO_DB_DIR --report example.report.txt example.fa >␣
→˓example.kraken

However, we may have fastq-files, so we need to use --fastq-input which tells Kraken2129 that it is
dealing with fastq-formated files. In addition, we are dealing with paired-end data, which we can tell
Kraken2130 with the switch --paired. Here, we are investigating one of the unmapped paired-end read
files of the evolved line.

kraken2 --use-names --threads 4 --db minikraken2_v2_8GB_201904_UPDATE --fastq-input --report␣
→˓evolved-6 --paired ../mappings/evolved-6.sorted.unmapped.R1.fastq ../mappings/evolved-6.sorted.
→˓unmapped.R2.fastq > evolved-6.kraken

This classification may take a while, depending on how many sequences we are going to classify. The
resulting content of the file “evolved-6.kraken” looks similar to the following example:

C 7001326F:121:CBVVLANXX:1:1105:2240:12640 816 251 816:9 171549:5 816:5␣
→˓171549:3 2:2 816:5 171549:4 816:34 171549:8 816:4 171549:2 816:10 A:35 816:10 171549:2 816:4␣
→˓171549:8 816:34 171549:4 816:5 2:2 171549:3 816:5 171549:5 816:9
C 7001326F:121:CBVVLANXX:1:1105:3487:12536 1339337 202 1339337:67 A:35 1339337:66
U 7001326F:121:CBVVLANXX:1:1105:5188:12504 0 251 0:91 A:35 0:91
U 7001326F:121:CBVVLANXX:1:1105:11030:12689 0 251 0:91 A:35 0:91
U 7001326F:121:CBVVLANXX:1:1105:7157:12806 0 206 0:69 A:35 0:68

Each sequence classified by Kraken2131 results in a single line of output. Output lines contain five tab-
delimited fields; from left to right, they are:

1. C/U: one letter code indicating that the sequence was either classified or unclassified.

2. The sequence ID, obtained from the FASTA/FASTQ header.

3. The taxonomy ID Kraken2132 used to label the sequence; this is 0 if the sequence is unclassified
and otherwise should be the NCBI Taxonomy133 identifier.

4. The length of the sequence in bp.

5. A space-delimited list indicating the lowest common ancestor (in the taxonomic tree) mapping of
each k-mer in the sequence. For example, 562:13 561:4 A:31 0:1 562:3 would indicate that:

• the first 13 k-mers mapped to taxonomy ID #562

• the next 4 k-mers mapped to taxonomy ID #561

• the next 31 k-mers contained an ambiguous nucleotide

• the next k-mer was not in the database

• the last 3 k-mers mapped to taxonomy ID #562

127 https://www.ccb.jhu.edu/software/kraken2/
128 https://www.ccb.jhu.edu/software/kraken2/
129 https://www.ccb.jhu.edu/software/kraken2/
130 https://www.ccb.jhu.edu/software/kraken2/
131 https://www.ccb.jhu.edu/software/kraken2/
132 https://www.ccb.jhu.edu/software/kraken2/
133 https://www.ncbi.nlm.nih.gov/taxonomy

40 Chapter 6. Taxonomic investigation

https://www.ccb.jhu.edu/software/kraken2/
https://www.ccb.jhu.edu/software/kraken2/
https://www.ccb.jhu.edu/software/kraken2/
https://www.ccb.jhu.edu/software/kraken2/
https://www.ccb.jhu.edu/software/kraken2/
https://www.ccb.jhu.edu/software/kraken2/
https://www.ncbi.nlm.nih.gov/taxonomy

Computational Genomics Tutorial, Release 2019.03

Note: The Kraken2134 manual can be accessed here135.

6.4.3 Investigate taxa

We can use the webpage NCBI TaxIdentifier136 to quickly get the names to the taxonomy identifier.
However, this is impractical as we are dealing potentially with many sequences. Kraken2137 has some
scripts that help us understand our results better.

Because we used the Kraken2138 switch --report FILE, we have got also a sample-wide report of all
taxa found. This is much better to get an overview what was found.

The first few lines of an example report are shown below.

83.56 514312 514312 U 0 unclassified
16.44 101180 0 R 1 root
16.44 101180 0 R1 131567 cellular organisms
16.44 101180 2775 D 2 Bacteria
13.99 86114 1 D1 1783270 FCB group
13.99 86112 0 D2 68336 Bacteroidetes/Chlorobi group
13.99 86103 8 P 976 Bacteroidetes
13.94 85798 2 C 200643 Bacteroidia
13.94 85789 19 O 171549 Bacteroidales
13.87 85392 0 F 815 Bacteroidaceae

The output of kraken-report is tab-delimited, with one line per taxon. The fields of the output, from
left-to-right, are as follows:

1. Percentage of reads covered by the clade rooted at this taxon

2. Number of reads covered by the clade rooted at this taxon

3. Number of reads assigned directly to this taxon

4. A rank code, indicating (U)nclassified, (D)omain, (K)ingdom, (P)hylum, (C)lass, (O)rder,
(F)amily, (G)enus, or (S)pecies. All other ranks are simply “-“.

5. NCBI Taxonomy139 ID

6. The indented scientific name

Note: If you want to compare the taxa content of different samples to another, one can create a report
whose structure is always the same for all samples, disregarding which taxa are found (obviously the
percentages and numbers will be different).

We can cerate such a report using the option --report-zero-counts which will print out all taxa (instead
of only those found). We then sort the taxa according to taxa-ids (column 5), e.g. sort -n -k5.

The report is not ordered according to taxa ids and contains all taxa in the database, even if they have
not been found in our sample and are thus zero. The columns are the same as in the former report,
however, we have more rows and they are now differently sorted, according to the NCBI Taxonomy140

id.
134 https://www.ccb.jhu.edu/software/kraken2/
135 https://www.ccb.jhu.edu/software/kraken2/index.shtml?t=manual
136 https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi
137 https://www.ccb.jhu.edu/software/kraken2/
138 https://www.ccb.jhu.edu/software/kraken2/
139 https://www.ncbi.nlm.nih.gov/taxonomy
140 https://www.ncbi.nlm.nih.gov/taxonomy

6.4. Kraken2 41

https://www.ccb.jhu.edu/software/kraken2/
https://www.ccb.jhu.edu/software/kraken2/index.shtml?t=manual
https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi
https://www.ccb.jhu.edu/software/kraken2/
https://www.ccb.jhu.edu/software/kraken2/
https://www.ncbi.nlm.nih.gov/taxonomy
https://www.ncbi.nlm.nih.gov/taxonomy

Computational Genomics Tutorial, Release 2019.03

6.4.4 Bracken

Bracken141 stands for Bayesian Re-estimation of Abundance with KrakEN, and is a statistical method
that computes the abundance of species in DNA sequences from a metagenomics sample [LU2017].
Bracken142 uses the taxonomy labels assigned by Kraken2143 (see above) to estimate the number of
reads originating from each species present in a sample. Bracken144 classifies reads to the best matching
location in the taxonomic tree, but does not estimate abundances of species. Combined with the Kraken
classifier, Bracken145 will produces more accurate species- and genus-level abundance estimates than
Kraken2146 alone.

The use of Bracken147 subsequent to Kraken2148 is optional but might improve on the Kraken2149 results.

Installation

We installed Bracken150 already together with Kraken2151 above, so it should be ready to be used. We
also downloaded the Bracken152 files together with the minikraken2 database above, so we are good to
go.

Usage

Now, we can use Bracken153 on the Kraken2154 results to improve them.

The general structure of the Bracken155 command look like this:

bracken -d PATH_TO_DB_DIR -i kraken2.report -o bracken.species.txt -l S

• -l S: denotes the level we want to look at. S stands for species but other levels are available.

• -d PATH_TO_DB_DIR: specifies the path to the Kraken2156 database that should be used.

Let us apply Bracken157 to the example above:

bracken -d minikraken2_v2_8GB_201904_UPDATE -i evolved-6.kraken -l S -o evolved-6.bracken

The species-focused result-table looks similar to this:

name taxonomy_id taxonomy_lvl kraken_assigned_reads added_reads new_est_reads ␣
→˓fraction_total_reads
Streptococcus sp. oral taxon 431 712633 S 2 0 2 0.00001
Neorhizobium sp. NCHU2750 1825976 S 0 0 0 0.00000
Pseudomonas sp. MT-1 150396 S 0 0 0 0.00000
Ahniella affigens 2021234 S 1 0 1 0.00000
Sinorhizobium sp. CCBAU 05631 794846 S 0 0 0 0.00000
Cohnella sp. 18JY8-7 2480923 S 1 0 1 0.00000

(continues on next page)

141 https://ccb.jhu.edu/software/bracken/index.shtml
142 https://ccb.jhu.edu/software/bracken/index.shtml
143 https://www.ccb.jhu.edu/software/kraken2/
144 https://ccb.jhu.edu/software/bracken/index.shtml
145 https://ccb.jhu.edu/software/bracken/index.shtml
146 https://www.ccb.jhu.edu/software/kraken2/
147 https://ccb.jhu.edu/software/bracken/index.shtml
148 https://www.ccb.jhu.edu/software/kraken2/
149 https://www.ccb.jhu.edu/software/kraken2/
150 https://ccb.jhu.edu/software/bracken/index.shtml
151 https://www.ccb.jhu.edu/software/kraken2/
152 https://ccb.jhu.edu/software/bracken/index.shtml
153 https://ccb.jhu.edu/software/bracken/index.shtml
154 https://www.ccb.jhu.edu/software/kraken2/
155 https://ccb.jhu.edu/software/bracken/index.shtml
156 https://www.ccb.jhu.edu/software/kraken2/
157 https://ccb.jhu.edu/software/bracken/index.shtml

42 Chapter 6. Taxonomic investigation

https://ccb.jhu.edu/software/bracken/index.shtml
https://ccb.jhu.edu/software/bracken/index.shtml
https://www.ccb.jhu.edu/software/kraken2/
https://ccb.jhu.edu/software/bracken/index.shtml
https://ccb.jhu.edu/software/bracken/index.shtml
https://www.ccb.jhu.edu/software/kraken2/
https://ccb.jhu.edu/software/bracken/index.shtml
https://www.ccb.jhu.edu/software/kraken2/
https://www.ccb.jhu.edu/software/kraken2/
https://ccb.jhu.edu/software/bracken/index.shtml
https://www.ccb.jhu.edu/software/kraken2/
https://ccb.jhu.edu/software/bracken/index.shtml
https://ccb.jhu.edu/software/bracken/index.shtml
https://www.ccb.jhu.edu/software/kraken2/
https://ccb.jhu.edu/software/bracken/index.shtml
https://www.ccb.jhu.edu/software/kraken2/
https://ccb.jhu.edu/software/bracken/index.shtml

Computational Genomics Tutorial, Release 2019.03

(continued from previous page)

Bacillus velezensis 492670 S 4 4 8 0.00002
Actinoplanes missouriensis 1866 S 2 8 10 0.00002

The important column is the new_est_reads, which gives the newly estimated reads.

6.5 Centrifuge

We can also use another tool by the same group called Centrifuge158 [KIM2017]. This tool uses a novel
indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-Manzini (FM) index,
optimized specifically for the metagenomic classification problem to assign a taxonomic labels in form of
NCBI Taxonomy159 to the sequence (if possible). The result is a classification of the sequence in question
to the most likely taxonomic label. If the search sequence is not similar to any genomic sequence in the
database used, it will not assign any taxonomic label.

Note: I would normally use Kraken2160 and only prefer Centrifuge161 if memory and/or speed are an
issue .

6.5.1 Installation

Use conda in the same fashion as before to install Centrifuge162:

conda create --yes -n centrifuge centrifuge
conda activate centrifuge

Now we create a directory where we are going to do the analysis and we will change into that directory
too.

make sure you are in your analysis root folder
cd ~/analysis

create dir
mkdir centrifuge
cd centrifuge

Now we need to create or download a Centrifuge163 database that can be used to assign the taxonomic
labels to sequences. We opt for downloading the pre-build database from the Centrifuge164 website:

curl -O ftp://ftp.ccb.jhu.edu/pub/infphilo/centrifuge/data/p_compressed+h+v.tar.gz

alternatively we can use wget
wget ftp://ftp.ccb.jhu.edu/pub/infphilo/centrifuge/data/p_compressed+h+v.tar.gz

once the download is finished, we need to extract the archive content
It will extract a few files from the archive and may take a moment to finish.
tar -xvzf p_compressed+h+v.tar.gz

158 http://www.ccb.jhu.edu/software/centrifuge/index.shtml
159 https://www.ncbi.nlm.nih.gov/taxonomy
160 https://www.ccb.jhu.edu/software/kraken2/
161 http://www.ccb.jhu.edu/software/centrifuge/index.shtml
162 http://www.ccb.jhu.edu/software/centrifuge/index.shtml
163 http://www.ccb.jhu.edu/software/centrifuge/index.shtml
164 http://www.ccb.jhu.edu/software/centrifuge/index.shtml

6.5. Centrifuge 43

http://www.ccb.jhu.edu/software/centrifuge/index.shtml
https://www.ncbi.nlm.nih.gov/taxonomy
https://www.ccb.jhu.edu/software/kraken2/
http://www.ccb.jhu.edu/software/centrifuge/index.shtml
http://www.ccb.jhu.edu/software/centrifuge/index.shtml
http://www.ccb.jhu.edu/software/centrifuge/index.shtml
http://www.ccb.jhu.edu/software/centrifuge/index.shtml

Computational Genomics Tutorial, Release 2019.03

Attention: Should the download fail. Please find links to alternative locations on the Downloads
(page 77) page.

Note: The database we will be using was created from bacteria and archaea sequences only. What are
the implications for us when we are trying to classify our sequences?

6.5.2 Usage

Now that we have installed Centrifuge165 and downloaded and extracted the pre-build database, we can
attempt to investigate the sequences we got back from the sequencing provider for other species as the
one it should contain. We call the Centrifuge166 tool and specify the database and fasta-file with the
sequences it should use. The general command structure looks like this:

centrifuge -x p_compressed+h+v -U example.fa --report-file report.txt -S results.txt

However, if we do not have fastq-files we may have to use the -f option, which tells Centrifuge167 that
it is dealing with a fasta-formated file. Here, we are investigating one of the unmapped paired-end read
files of the evolved line.

centrifuge -x p_compressed+h+v -U ../mappings/evolved-6.sorted.unmapped.R1.fastq --report-file␣
→˓evolved-6-R1-report.txt -S evolved-6-R1-results.txt

This classification may take a moment, depending on how many sequences we are going to classify. The
resulting content of the file evolved-6-R1-results.txt looks similar to the following example:

readID seqID taxID score 2ndBestScore hitLength queryLength numMatches
M02810:197:000000000-AV55U:1:1101:15316:8461 cid|1747 1747 1892 0 ␣
→˓103 135 1
M02810:197:000000000-AV55U:1:1101:15563:3249 cid|161879 161879 18496 0 ␣
→˓151 151 1
M02810:197:000000000-AV55U:1:1101:19743:5166 cid|564 564 10404 10404 117 ␣
→˓151 2
M02810:197:000000000-AV55U:1:1101:19743:5166 cid|562 562 10404 10404 117 ␣
→˓151 2

Each sequence classified by Centrifuge168 results in a single line of output. Output lines contain eight
tab-delimited fields; from left to right, they are according to the Centrifuge169 website:

1. The read ID from a raw sequencing read.

2. The sequence ID of the genomic sequence, where the read is classified.

3. The taxonomic ID of the genomic sequence in the second column.

4. The score for the classification, which is the weighted sum of hits.

5. The score for the next best classification.

6. A pair of two numbers: (1) an approximate number of base pairs of the read that match the
genomic sequence and (2) the length of a read or the combined length of mate pairs.

7. A pair of two numbers: (1) an approximate number of base pairs of the read that match the
genomic sequence and (2) the length of a read or the combined length of mate pairs.

165 http://www.ccb.jhu.edu/software/centrifuge/index.shtml
166 http://www.ccb.jhu.edu/software/centrifuge/index.shtml
167 http://www.ccb.jhu.edu/software/centrifuge/index.shtml
168 http://www.ccb.jhu.edu/software/centrifuge/index.shtml
169 http://www.ccb.jhu.edu/software/centrifuge/index.shtml

44 Chapter 6. Taxonomic investigation

http://www.ccb.jhu.edu/software/centrifuge/index.shtml
http://www.ccb.jhu.edu/software/centrifuge/index.shtml
http://www.ccb.jhu.edu/software/centrifuge/index.shtml
http://www.ccb.jhu.edu/software/centrifuge/index.shtml
http://www.ccb.jhu.edu/software/centrifuge/index.shtml

Computational Genomics Tutorial, Release 2019.03

8. The number of classifications for this read, indicating how many assignments were made.

6.5.3 Investigate taxa

Centrifuge report

The command above creates a Centrifuge170 report automatically for us. It contains an overview of the
identified taxa and their abundances in your supplied sequences (normalised to genomic length):

name taxID taxRank genomeSize numReads numUniqueReads abundance
Pseudomonas aeruginosa 287 species 22457305 1 0 0.0
Pseudomonas fluorescens 294 species 14826544 1 1 0.0
Pseudomonas putida 303 species 6888188 1 1 0.0
Ralstonia pickettii 329 species 6378979 3 2 0.0
Pseudomonas pseudoalcaligenes 330 species 4691662 1 1 0.0171143

Each line contains seven tab-delimited fields; from left to right, they are according to the Centrifuge171

website:

1. The name of a genome, or the name corresponding to a taxonomic ID (the second column) at a
rank higher than the strain.

2. The taxonomic ID.

3. The taxonomic rank.

4. The length of the genome sequence.

5. The number of reads classified to this genomic sequence including multi-classified reads.

6. The number of reads uniquely classified to this genomic sequence.

7. The proportion of this genome normalized by its genomic length.

Kraken-like report

If we would like to generate a report as generated with the former tool Kraken2172, we can do it like this:

centrifuge-kreport -x p_compressed+h+v evolved-6-R1-results.txt > evolved-6-R1-kreport.txt

0.00 0 0 U 0 unclassified
78.74 163 0 - 1 root
78.74 163 0 - 131567 cellular organisms
78.74 163 0 D 2 Bacteria
54.67 113 0 P 1224 Proteobacteria
36.60 75 0 C 1236 Gammaproteobacteria
31.18 64 0 O 91347 Enterobacterales
30.96 64 0 F 543 Enterobacteriaceae
23.89 49 0 G 561 Escherichia
23.37 48 48 S 562 Escherichia coli
0.40 0 0 S 564 Escherichia fergusonii
0.12 0 0 S 208962 Escherichia albertii
3.26 6 0 G 570 Klebsiella
3.14 6 6 S 573 Klebsiella pneumoniae
0.12 0 0 S 548 [Enterobacter] aerogenes
2.92 6 0 G 620 Shigella
1.13 2 2 S 623 Shigella flexneri

170 http://www.ccb.jhu.edu/software/centrifuge/index.shtml
171 http://www.ccb.jhu.edu/software/centrifuge/index.shtml
172 https://www.ccb.jhu.edu/software/kraken2/

6.5. Centrifuge 45

http://www.ccb.jhu.edu/software/centrifuge/index.shtml
http://www.ccb.jhu.edu/software/centrifuge/index.shtml
https://www.ccb.jhu.edu/software/kraken2/

Computational Genomics Tutorial, Release 2019.03

0.82 1 1 S 624 Shigella sonnei
0.50 1 1 S 1813821 Shigella sp. PAMC 28760
0.38 0 0 S 621 Shigella boydii

This gives a similar (not the same) report as the Kraken2173 tool. The report is tab-delimited, with one
line per taxon. The fields of the output, from left-to-right, are as follows:

1. Percentage of reads covered by the clade rooted at this taxon

2. Number of reads covered by the clade rooted at this taxon

3. Number of reads assigned directly to this taxon

4. A rank code, indicating (U)nclassified, (D)omain, (K)ingdom, (P)hylum, (C)lass, (O)rder, (F)amily,
(G)enus, or (S)pecies. All other ranks are simply “-“.

5. NCBI Taxonomy ID

6. The indented scientific name

6.6 Visualisation (Krona)

We use the Krona174 tools to create a nice interactive visualisation of the taxa content of our sample
[ONDOV2011]. Fig. 6.2 shows an example (albeit an artificial one) snapshot of the visualisation Krona175

provides. Fig. 6.2 is a snapshot of the interactive web-page similar to the one we try to create.

Fig. 6.2: Example of an Krona output webpage.

6.6.1 Installation

Install Krona176 with:

source activate ngs
conda install krona

First some house-keeping to make the Krona177 installation work. Do not worry to much about what is
happening here.

173 https://www.ccb.jhu.edu/software/kraken2/
174 https://github.com/marbl/Krona/wiki
175 https://github.com/marbl/Krona/wiki
176 https://github.com/marbl/Krona/wiki
177 https://github.com/marbl/Krona/wiki

46 Chapter 6. Taxonomic investigation

https://www.ccb.jhu.edu/software/kraken2/
https://github.com/marbl/Krona/wiki
https://github.com/marbl/Krona/wiki
../_static/taxonomy.krona.html
https://github.com/marbl/Krona/wiki
https://github.com/marbl/Krona/wiki

Computational Genomics Tutorial, Release 2019.03

we delete a symbolic link that is not correct
rm -rf ~/miniconda3/envs/ngs/opt/krona/taxonomy

we create a directory in our home where the krona database will live
mkdir -p ~/krona/taxonomy

now we make a symbolic link to that directory
ln -s ~/krona/taxonomy ~/miniconda3/envs/ngs/opt/krona/taxonomy

6.6.2 Build the taxonomy

We need to build a taxonomy database for Krona178. However, if this fails we will skip this step and just
download a pre-build one. Lets first try to build one.

ktUpdateTaxonomy.sh ~/krona/taxonomy

Now, if this fails, we download a pre-build taxonomy database for krona:

Download pre-build database
curl -O http://compbio.massey.ac.nz/data/taxonomy.tab.gz

we unzip the file
gzip -d taxonomy.tab.gz

we move the unzipped file to our taxonomy directory we specified in the step before.
mv taxonomy.tab ~/krona/taxonomy

Attention: Should this also fail we can download a pre-build database on the Downloads (page 77)
page via a browser.

6.6.3 Visualise

Now, we use the tool ktImportTaxonomy from the Krona179 tools to create the html web-page. We first
need build a two column file (read_id<tab>tax_id) as input to the ktImportTaxonomy tool. We will do
this by cutting the columns out of either the Kraken2180 or Centrifuge181 results:

Kraken2
cd kraken
cat evolved-6.kraken | cut -f 2,3 > evolved-6.kraken.krona
ktImportTaxonomy evolved-6.kraken.krona
firefox taxonomy.krona.html

Centrifuge
cd centrifuge
cat evolved-6-R1-results.txt | cut -f 1,3 > evolved-6-R1-results.krona
ktImportTaxonomy evolved-6-R1-results.krona
firefox taxonomy.krona.html

What happens here is that we extract the second and third column from the Kraken2182 results. After-
wards, we input these to the Krona183 script, and open the resulting web-page in a bowser. Done!

178 https://github.com/marbl/Krona/wiki
179 https://github.com/marbl/Krona/wiki
180 https://www.ccb.jhu.edu/software/kraken2/
181 http://www.ccb.jhu.edu/software/centrifuge/index.shtml
182 https://www.ccb.jhu.edu/software/kraken2/
183 https://github.com/marbl/Krona/wiki

6.6. Visualisation (Krona) 47

https://github.com/marbl/Krona/wiki
https://github.com/marbl/Krona/wiki
https://www.ccb.jhu.edu/software/kraken2/
http://www.ccb.jhu.edu/software/centrifuge/index.shtml
https://www.ccb.jhu.edu/software/kraken2/
https://github.com/marbl/Krona/wiki

Computational Genomics Tutorial, Release 2019.03

48 Chapter 6. Taxonomic investigation

CHAPTER

SEVEN

VARIANT CALLING

7.1 Preface

In this section we will use our genome assembly based on the ancestor and call genetic variants in the
evolved line [NIELSEN2011].

7.2 Overview

The part of the workflow we will work on in this section can be viewed in Fig. 7.1.

7.3 Learning outcomes

After studying this tutorial section you should be able to:

#. Use tools to call variants based on a reference genome. #, Be able to describe what influences the
calling of variants.

7.4 Before we start

Lets see how our directory structure looks so far:

cd ~/analysis
ls -1F

assembly/
data/
kraken/
mappings/
trimmed/
trimmed-fastqc/

7.5 Installing necessary software

Tools we are going to use in this section and how to intall them if you not have done it yet.

activate the env
conda activate ngs

Install these tools into the conda environment

(continues on next page)

49

Computational Genomics Tutorial, Release 2019.03

Fig. 7.1: The part of the workflow we will work on in this section marked in red.

50 Chapter 7. Variant calling

Computational Genomics Tutorial, Release 2019.03

(continued from previous page)

if not already installed
conda install samtools
conda install bamtools
conda install freebayes
conda install bedtools
conda install vcflib
conda install rtg-tools
conda install bcftools

7.6 Preprocessing

We first need to make an index of our reference genome as this is required by the SNP caller. Given
a scaffold/contig file in fasta-format, e.g. scaffolds.fasta which is located in the directory assembly/
spades_final, use SAMtools188 to do this:

samtools faidx assembly/spades_final/scaffolds.fasta

Furthermore we need to pre-process our mapping files a bit further and create a bam-index file (.bai)
for the bam-file we want to work with:

bamtools index -in mappings/evolved-6.sorted.dedup.q20.bam

Lets also create a new directory for the variants:

mkdir variants

7.7 Calling variants

7.7.1 SAMtools mpileup

We use the sorted filtered bam-file that we produced in the mapping step before.

We first pile up all the reads and then call variants
samtools mpileup -u -g -f assembly/spades_final/scaffolds.fasta mappings/evolved-6.sorted.dedup.q20.
→˓bam | bcftools call -v -m -O z -o variants/evolved-6.mpileup.vcf.gz

SAMtools189 mpileup parameter:

• -u: uncompressed output

• -g: generate genotype likelihoods in BCF format

• -f FILE: faidx indexed reference sequence file

BCFtools190 view parameter:

• -v: output variant sites only

• -m: alternative model for multiallelic and rare-variant calling

• -o: output file-name

• -O z: output type: ‘z’ compressed VCF

188 http://samtools.sourceforge.net/
189 http://samtools.sourceforge.net/
190 http://www.htslib.org/doc/bcftools.html

7.6. Preprocessing 51

http://samtools.sourceforge.net/
http://samtools.sourceforge.net/
http://www.htslib.org/doc/bcftools.html

Computational Genomics Tutorial, Release 2019.03

7.7.2 Freebayes

As an alternative we can do some variant calling with another tool called freebayes191. Given a reference
genome scaffold file in fasta-format, e.g. scaffolds.fasta and the index in .fai format and a mapping
file (.bam file) and a mapping index (.bai file), we can call variants with freebayes192 like so:

Now we call variants and pipe the results into a new file
freebayes -f assembly/spades_final/scaffolds.fasta mappings/evolved-6.sorted.dedup.q20.bam | gzip >␣
→˓variants/evolved-6.freebayes.vcf.gz

7.8 Post-processing

7.8.1 Understanding the output files (.vcf)

Lets look at a vcf-file:

first 10 lines, which are part of the header
zcat variants/evolved-6.mpileup.vcf.gz | head

##fileformat=VCFv4.2
##FILTER=<ID=PASS,Description="All filters passed">
##samtoolsVersion=1.3.1+htslib-1.3.1
##samtoolsCommand=samtools mpileup -g -f assembly/spades_final/scaffolds.fasta -o variants/evolved-
→˓6.mpileup.bcf mappings/evolved-6.sorted.q20.bam
##reference=file://assembly/spades_final/scaffolds.fasta
##contig=<ID=NODE_1_length_1419525_cov_15.3898,length=1419525>
##contig=<ID=NODE_2_length_1254443_cov_15.4779,length=1254443>
##contig=<ID=NODE_3_length_972329_cov_15.3966,length=972329>
##contig=<ID=NODE_4_length_951685_cov_15.4231,length=951685>
##contig=<ID=NODE_5_length_925222_cov_15.39,length=925222>
##contig=<ID=NODE_6_length_916533_cov_15.4426,length=916533>

Lets look at the variants:

remove header lines and look at top 4 entires
zcat variants/evolved-6.mpileup.vcf.gz | egrep -v '##' | head -4

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT mappings/evolved-6.sorted.
→˓q20.bam
NODE_1_length_1419525_cov_15.3898 24721 . T C 164 . DP=12;VDB=0.
→˓205941;SGB=-0.680642;MQ0F=0;AC=2;AN=2;DP4=0,0,12,0;MQ=40 GT:PL 1/1:191,36,0
NODE_1_length_1419525_cov_15.3898 157033 . AAGAGAGAGAGAGAGAGAGAGAGA ␣
→˓AAGAGAGAGAGAGAGAGAGAGA 39.3328 . INDEL;IDV=6;IMF=0.146341;DP=41;VDB=0.0813946;SGB=-0.
→˓616816;MQSB=1;MQ0F=0;ICB=1;HOB=0.5;AC=1;AN=2;DP4=13,17,3,3;MQ=42 GT:PL 0/1:75,0,255
NODE_1_length_1419525_cov_15.3898 162469 . T C 19.609 . DP=16;VDB=0.
→˓045681;SGB=-0.511536;RPB=0.032027;MQB=0.832553;BQB=0.130524;MQ0F=0;ICB=1;HOB=0.5;AC=1;AN=2;DP4=13,
→˓0,3,0;MQ=39 GT:PL 0/1:54,0,155

The fields in a vcf-file are described in he table (Table 7.1) below:
191 https://github.com/ekg/freebayes
192 https://github.com/ekg/freebayes

52 Chapter 7. Variant calling

https://github.com/ekg/freebayes
https://github.com/ekg/freebayes

Computational Genomics Tutorial, Release 2019.03

Table 7.1: The vcf-file format fields.
Col Field Description
1 CHROM Chromosome name
2 POS 1-based position. For an indel, this is the position preceding the indel.
3 ID Variant identifier. Usually the dbSNP rsID.
4 REF Reference sequence at POS involved in the variant. For a SNP, it is a single base.
5 ALT Comma delimited list of alternative seuqence(s).
6 QUAL Phred-scaled probability of all samples being homozygous reference.
7 FILTER Semicolon delimited list of filters that the variant fails to pass.
8 INFO Semicolon delimited list of variant information.
9 FORMAT Colon delimited list of the format of individual genotypes in the following fields.
10+ Sample(s) Individual genotype information defined by FORMAT.

7.8.2 Statistics

Now we can use it to do some statistics and filter our variant calls.

First, to prepare out vcf-file for querying we need to index it with tabix:

tabix -p vcf variants/evolved-6.mpileup.vcf.gz

• -p vcf: input format

We can get some quick stats with rtg vcfstats:

rtg vcfstats variants/evolved-6.mpileup.vcf.gz

Example output from rtg vcfstats:

Location : variants/evolved-6.mpileup.vcf.gz
Failed Filters : 0
Passed Filters : 516
SNPs : 399
MNPs : 0
Insertions : 104
Deletions : 13
Indels : 0
Same as reference : 0
SNP Transitions/Transversions: 1.87 (286/153)
Total Het/Hom ratio : 3.20 (393/123)
SNP Het/Hom ratio : 8.98 (359/40)
MNP Het/Hom ratio : - (0/0)
Insertion Het/Hom ratio : 0.30 (24/80)
Deletion Het/Hom ratio : 3.33 (10/3)
Indel Het/Hom ratio : - (0/0)
Insertion/Deletion ratio : 8.00 (104/13)
Indel/SNP+MNP ratio : 0.29 (117/399)

However, we can also run BCFtools193 to extract more detailed statistics about our variant calls:

bcftools stats -F assembly/spades_final/scaffolds.fasta -s - variants/evolved-6.mpileup.vcf.gz >␣
→˓variants/evolved-6.mpileup.vcf.gz.stats

• -s -: list of samples for sample stats, “-” to include all samples

• -F FILE: faidx indexed reference sequence file to determine INDEL context

Now we take the stats and make some plots (e.g. Fig. 7.2) which are particular of interest if having
multiple samples, as one can easily compare them. However, we are only working with one here:

193 http://www.htslib.org/doc/bcftools.html

7.8. Post-processing 53

http://www.htslib.org/doc/bcftools.html

Computational Genomics Tutorial, Release 2019.03

mkdir variants/plots
plot-vcfstats -p variants/plots/ variants/evolved-6.mpileup.vcf.gz.stats

• -p: The output files prefix, add a slash at the end to create a new directory.

Fig. 7.2: Example of plot-vcfstats output.

7.8.3 Variant filtration

Variant filtration is a big topic in itself [OLSEN2015]. There is no consens yet and research on how to
best filter variants is ongoing.

We will do some simple filtration procedures here. For one, we can filter out low quality reads.

Here, we only include variants that have quality > 30.

use rtg vcfffilter
rtg vcffilter -q 30 -i variants/evolved-6.mpileup.vcf.gz -o variants/evolved-6.mpileup.q30.vcf.gz

• -i FILE: input file

• -o FILE: output file

• -q FLOAT: minimal allowed quality in output.

or use vcflib194:

or use vcflib
zcat variants/evolved-6.mpileup.vcf.gz | vcffilter -f "QUAL >= 30" | gzip > variants/evolved-6.
→˓mpileup.q30.vcf.gz z

• -f "QUAL >= 30": we only include variants that have been called with quality >= 30.

Quick stats for the filtered variants:

look at stats for filtered
rtg vcfstats variants/evolved-6.mpileup.q30.vcf.gz

194 https://github.com/vcflib/vcflib#vcflib

54 Chapter 7. Variant calling

https://github.com/vcflib/vcflib#vcflib

Computational Genomics Tutorial, Release 2019.03

freebayes195 adds some extra information to the vcf-files it creates. This allows for some more detailed
filtering. This strategy will NOT work on the SAMtools196 mpileup called variants Here we filter, based
on some recommendation form the developer of freebayes197:

zcat variants/evolved-6.freebayes.vcf.gz | vcffilter -f "QUAL > 1 & QUAL / AO > 10 & SAF > 0 & SAR␣
→˓> 0 & RPR > 1 & RPL > 1" | gzip > variants/evolved-6.freebayes.filtered.vcf.gz

• QUAL > 1: removes really bad sites

• QUAL / AO > 10: additional contribution of each obs should be 10 log units (~ Q10 per read)

• SAF > 0 & SAR > 0: reads on both strands

• RPR > 1 & RPL > 1: at least two reads “balanced” to each side of the site

Todo: Look at the statistics. One ratio that is mentioned in the statistics is transition transversion ratio
(ts/tv). Explain what this ratio is and why the observed ratio makes sense.

This strategy used here will do for our purposes. However, several more elaborate filtering strategies
have been explored, e.g. here198.

195 https://github.com/ekg/freebayes
196 http://samtools.sourceforge.net/
197 https://github.com/ekg/freebayes
198 https://github.com/ekg/freebayes#observation-filters-and-qualities

7.8. Post-processing 55

https://github.com/ekg/freebayes
http://samtools.sourceforge.net/
https://github.com/ekg/freebayes
https://github.com/ekg/freebayes#observation-filters-and-qualities

Computational Genomics Tutorial, Release 2019.03

56 Chapter 7. Variant calling

CHAPTER

EIGHT

GENOME ANNOTATION

8.1 Preface

In this section you will predict genes and assess your assembly using Augustus201 and BUSCO202.

Attention: The annotation process will take up to 90 minutes. Start it as soon as possible.

Note: You will encounter some To-do sections at times. Write the solutions and answers into a text-file.

8.2 Overview

The part of the workflow we will work on in this section can be viewed in Fig. 8.1.

8.3 Learning outcomes

After studying this section of the tutorial you should be able to:

1. Explain how annotation completeness is assessed using orthologues

2. Use bioinformatics tools to perform gene prediction

3. Use genome-viewing software to graphically explore genome annotations and NGS data overlays

8.4 Before we start

Lets see how our directory structure looks so far:

cd ~/analysis
ls -1F

assembly/
data/
kraken/
mappings/
trimmed/

(continues on next page)

201 http://augustus.gobics.de
202 http://busco.ezlab.org

57

http://augustus.gobics.de
http://busco.ezlab.org

Computational Genomics Tutorial, Release 2019.03

Fig. 8.1: The part of the workflow we will work on in this section marked in red.

58 Chapter 8. Genome annotation

Computational Genomics Tutorial, Release 2019.03

(continued from previous page)

trimmed-fastqc/
variants/

8.5 Installing the software

activate the env
conda activate ngs

conda install busco

This will install both the Augustus203 [STANKE2005] and the BUSCO204 [SIMAO2015] software, which
we will use (separately) for gene prediction and assessment of assembly completeness, respectively.

Make a directory for the annotation results:

mkdir annotation
cd annotation

We need to get the database that BUSCO205 will use to assess orthologue presence absence in our genome
annotation. We will use wget for this:

wget http://busco.ezlab.org/datasets/saccharomycetales_odb9.tar.gz

unpack the archive
tar -xzvf saccharomycetales_odb9.tar.gz

Note: Should the download fail, download manually from Downloads (page 77).

We also need to place the configuration file for this program in a location in which we have “write”
privileges. Do this recursively for the entire config directory, placing it into your current annotation
directory:

cp -r ~/miniconda3/envs/ngs/config/ ./

We next need to specify the path to this config file so that the program knows where to look now that
we have changed the location (note that this is all one line below):

export AUGUSTUS_CONFIG_PATH="~/analysis/annotation/config/"n

We next check that we have actually changed the path correctly. Entering this into the command should
result in the file location being output on the next line of the command prompt.

echo $AUGUSTUS_CONFIG_PATH

8.6 Assessment of orthologue presence and absence

BUSCO206 will assess orthologue presence absence using blastn207, a rapid method of finding close
matches in large databases (we will discuss this in lecture). It uses blastn208 to make sure that it does

203 http://augustus.gobics.de
204 http://busco.ezlab.org
205 http://busco.ezlab.org
206 http://busco.ezlab.org
207 https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch
208 https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch

8.5. Installing the software 59

http://augustus.gobics.de
http://busco.ezlab.org
http://busco.ezlab.org
http://busco.ezlab.org
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch

Computational Genomics Tutorial, Release 2019.03

not miss any part of any possible coding sequences. To run the program, we give it

• A fasta format input file

• A name for the output files

• The name of the lineage database against which we are assessing orthologue presence absence
(that we downloaded above)

• An indication of the type of annotation we are doing (genomic, as opposed to transcriptomic or
previously annotated protein files).

busco -i ../assembly/spades_final/scaffolds.fasta -o file_name_of_your_choice -l ./
→˓saccharomycetales_odb9 -m geno

Note: This should take about 90 minutes to run. So in the meantime do the next step.

8.7 Annotation

We will use Augustus209 to perform gene prediction. This program implements a hidden markov model
(HMM) to infer where genes lie in the assembly you have made. To run the program you need to give it:

• Information as to whether you would like the genes called on both strands (or just the forward or
reverse strands)

• A “model” organism on which it can base it’s HMM parameters on (in this case we will use S.
cerevisiae)

• The location of the assembly file

• A name for the output file, which will be a .gff (general feature format) file.

• We will also tell it to display a progress bar as it moves through the genome assembly.

augustus --progress=true --strand=both --species=saccharomyces_cerevisiae_S288C ../assembly/spades_
→˓final/scaffolds.fasta > your_new_fungus.gff

Note: Should the process of producing your annotation fail, you can download a annotation manually
from Downloads (page 77). Remember to unzip the file.

8.8 Interactive viewing

We will use the software IGV210 to view the assembly, the gene predictions you have made, and the
variants that you have called, all in one window.

8.9 Installing IGV211

We will not install this software using conda212. Instead, make a new directory in your home directory
entitled “software”, and change into this directory. You will have to download the software from the
Broad Institute:

209 http://augustus.gobics.de
210 http://software.broadinstitute.org/software/igv/
211 http://software.broadinstitute.org/software/igv/
212 http://conda.pydata.org/miniconda.html

60 Chapter 8. Genome annotation

http://augustus.gobics.de
http://software.broadinstitute.org/software/igv/
http://conda.pydata.org/miniconda.html

Computational Genomics Tutorial, Release 2019.03

mkdir software
cd software
wget http://data.broadinstitute.org/igv/projects/downloads/2.4/IGV_2.4.10.zip

unzip the software:
unzip IGV_2.4.10.zip

and change into that directory.
cd IGV_2.4.10.zip

To run the interactive GUI, you will need to run the bash script in that directory:
bash igv.sh

Note: Should the download fail, download manually from Downloads (page 77).

This will open up a new window. Navigate to that window and open up your genome assembly:

• Genome -> load Genome from File

• Load your assembly, not your gff file.

Load the tracks:

• File -> Load from file

• Load your vcf file from last week

• Load your gff file from this week.

At this point you should be able to zoom in and out to see regions in which there are SNPs or other types
of variants. You can also see the predicted genes. If you zoom in far enough, you can see the sequence
(DNA and protein).

If you have time and interest, you can right click on the sequence and copy it. Open a new browser
window and go to the blastn homepage. There, you can blast your gene of interest (GOI) and see if blast
can assign a function to it.

The end goal of this lab will be for you to select a variant that you feel is interesting (e.g. due to the
gene it falls near or within), and hypothesize as to why that mutation might have increased in frequency
in these evolving yeast populations.

8.10 Assessment of orthologue presence and absence (2)

Hopefully your BUSCO213 analysis will have finished by this time. Navigate into the output directory
you created. There are many directories and files in there containing information on the orthologues
that were found, but here we are only really interested in one: the summary statistics. This is located
in the short_summary*.txt file. Look at this file. It will note the total number of orthologues found, the
number expected, and the number missing. This gives an indication of your genome completeness.

Todo: Is it necessarily true that your assembly is incomplete if it is missing some orthologues? Why or
why not?

213 http://busco.ezlab.org

8.10. Assessment of orthologue presence and absence (2) 61

http://busco.ezlab.org

Computational Genomics Tutorial, Release 2019.03

62 Chapter 8. Genome annotation

CHAPTER

NINE

ORTHOLOGY AND PHYLOGENY

Warning: Since 2020, none of the internal links are functioning. Please use the Dropbox links in the
Downloads (page 77) section.

9.1 Preface

In this section you will use some software to find orthologue genes and do phylogenetic reconstructions.

9.2 Learning outcomes

After studying this tutorial you should be able to:

1. Use bioinformatics software to find orthologues in the NCBI database.

2. Use bioinformatics software to perform sequence alignment.

3. Use bioinformatics software to perform phylogenetic reconstructions.

9.3 Before we start

Lets see how our directory structure looks so far:

cd ~/analysis
ls -1F

annotation/
assembly/
data/
kraken/
mappings/
trimmed/
trimmed-fastqc/
variants/

Make a directory for the phylogeny results (in your analysis directory):

mkdir phylogeny

Download the fasta file of the S. cerevisiase TEF2 gene to the phylogeny folder:

cd phylogeny
curl -O http://compbio.massey.ac.nz/data/203341/s_cerev_tef2.fas

63

Computational Genomics Tutorial, Release 2019.03

Note: Should the download fail, download manually from Downloads (page 77).

9.4 Installing the software

activate the env
conda activate ngs

conda install blast

This will install a BLAST216 executable that you can use to remotely query the NCBI database.

conda install muscle

This will install MUSCLE217, alignment program that you can use to align nucleotide or protein se-
quences.

We will also install RAxML-NG218, a phylogenetic tree inference tool, which uses maximum-likelihood
(ML) optimality criterion. However, there is no conda repository for it yet. Thus, we need to download
it manually.

wget
https://github.com/amkozlov/raxml-ng/releases/download/0.5.1/raxml-ng_v0.5.1b_linux_x86_64.zip

unzip raxml-ng_v0.5.1b_linux_x86_64.zip

rm raxml-ng_v0.5.1b_linux_x86_64.zip

9.5 Finding orthologues using BLAST

We will first make a BLAST219 database of our current assembly so that we can find the orthologous
sequence of the S. cerevisiae gene. To do this, we run the command makeblastdb:

create blast db
makeblastdb in ../assembly/spades_final/scaffolds.fasta dbtype nucl

To run BLAST220, we give it:

• -db: The name of the database that we are BLASTing

• -query: A fasta format input file

• A name for the output files

• Some notes about the format we want

First, we blast without any formatting:

blastn db ../assembly/spades_final/scaffolds.fasta query s_cerev_tef2.fas > blast.out

This should output a file with a set of BLAST221 hits similar to what you might see on the BLAST222 web
site.

216 https://blast.ncbi.nlm.nih.gov/Blast.cgi
217 http://www.ebi.ac.uk/Tools/msa/muscle/
218 https://github.com/amkozlov/raxml-ng
219 https://blast.ncbi.nlm.nih.gov/Blast.cgi
220 https://blast.ncbi.nlm.nih.gov/Blast.cgi
221 https://blast.ncbi.nlm.nih.gov/Blast.cgi
222 https://blast.ncbi.nlm.nih.gov/Blast.cgi

64 Chapter 9. Orthology and Phylogeny

https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ebi.ac.uk/Tools/msa/muscle/
https://github.com/amkozlov/raxml-ng
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi

Computational Genomics Tutorial, Release 2019.03

Read through the output (e.g. using nano) to see what the results of your BLAST223 run was.

Next we will format the output a little so that it is easier to deal with.

blastn db ../assembly/spades_final/scaffolds.fasta query s_cerev_tef2.fas evalue 1e-100 outfmt “6␣
→˓length sseq” > blast_formatted.out

This will yield a file that has only the sequences of the subject, so that we can later add those to other
fasta files. However, the formatting is not perfect. To adjust the format such that it is fasta format, open
the file in an editor (e.g. nano) and edit the first line so that it has a name for your sequence. You should
know the general format of a fasta-file (e.g. the first line start with a “>”).

Hint: To edit in vi editor, you will need to press the escape key and “a” or “e”. To save in vi, you will
need to press the escape key and “w” (write). To quit vi, you will need to press the escape key and “q”
(quit).

Next, you have to replace the dashes (signifying indels in the BLAST224 result). This can easily be done
in vi: Press the escape key, followed by: :%s/\-//g

Now we will BLAST225 a remote database to get a list of hits that are already in the NCBI database.

Note: It turns out you may not be able to access this database from within BioLinux. In such a case,
download the file named blast.fas and place it into your ~/analysis/phylogeny/ directory.

curl -O http://compbio.massey.ac.nz/data/203341/blast_u.fas

Append the fasta file of your yeast sequence to this file, using whatever set of commands you wish/know.

Note: Should the download fail, download manually from Downloads (page 77).

9.6 Performing an alignment

We will use MUSCLE226 to perform our alignment on all the sequences in the BLAST227 fasta file. This
syntax is very simple (change the filenames accordingly):

muscle in infile.fas out your_alignment.aln

9.7 Building a phylogeny

We will use RAxML-NG228 to build our phylogeny. This uses a maximum likelihood method to infer
parameters of evolution and the topology of the tree. Again, the syntx of the command is fairly simple,
except you must make sure that you are using the directory in which RAxML-NG229 sits.

The arguments are:

• -s: an alignment file

223 https://blast.ncbi.nlm.nih.gov/Blast.cgi
224 https://blast.ncbi.nlm.nih.gov/Blast.cgi
225 https://blast.ncbi.nlm.nih.gov/Blast.cgi
226 http://www.ebi.ac.uk/Tools/msa/muscle/
227 https://blast.ncbi.nlm.nih.gov/Blast.cgi
228 https://github.com/amkozlov/raxml-ng
229 https://github.com/amkozlov/raxml-ng

9.6. Performing an alignment 65

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ebi.ac.uk/Tools/msa/muscle/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://github.com/amkozlov/raxml-ng
https://github.com/amkozlov/raxml-ng

Computational Genomics Tutorial, Release 2019.03

• -m: a model of evolution. In this case we will use a general time reversible model with gamma
distributed rates (GTR+GAMMA)

• -n: outfile-name

• -p: specify a random number seed for the parsimony inferences

raxmlHPC -s your_alignment.aln -m GTRGAMMA n yeast_tree p 12345

9.8 Visualizing the phylogeny

We will use the online software Interactive Tree of Life (iTOL)230 to visualize the tree. Navigate to this
homepage. Open the file containing your tree (*bestTree.out), copy the contents, and paste into the
web page (in the Tree text box).

You should then be able to zoom in and out to see where your yeast taxa is. To find out the closest
relative, you will have to use the NCBI taxa page231.

Todo: Are you certain that the yeast are related in the way that the phylogeny suggests? Why might the
topology of this phylogeny not truly reflect the evolutionary history of these yeast species?

230 http://itol.embl.de/upload.cgi
231 https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi

66 Chapter 9. Orthology and Phylogeny

http://itol.embl.de/upload.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi

CHAPTER

TEN

VARIANTS-OF-INTEREST

10.1 Preface

In this section we will use our genome annotation of our reference and our genome variants in the
evolved line to find variants that are interesting in terms of the observed biology.

Note: You will encounter some To-do sections at times. Write the solutions and answers into a text-file.

10.2 Overview

The part of the workflow we will work on in this section can be viewed in Fig. 10.1.

10.3 Learning outcomes

After studying this section of the tutorial you should be able to:

1. Identify variants of interests.

2. Understand how the variants might affect the observed biology in the evolved line.

10.4 Before we start

Lets see how our directory structure looks so far:

cd ~/analysis
ls -1F

annotation/
assembly/
data/
kraken/
mappings/
phylogeny/
SolexaQA/
SolexaQA++
trimmed/
trimmed-fastqc/
trimmed-solexaqa/
variants/

67

Computational Genomics Tutorial, Release 2019.03

Fig. 10.1: The part of the workflow we will work on in this section marked in red.

68 Chapter 10. Variants-of-interest

Computational Genomics Tutorial, Release 2019.03

10.5 General comments for identifying variants-of-interest

Things to consider when looking for variants-of-interest:

• The quality score of the variant call.

– Do we call the variant with a higher then normal score?

• The mapping quality score.

– How confident are we that the reads were mapped at the position correctly?

• The location of the SNP.

– SNPs in larger contigs are probably more interesting than in tiny contigs.

– Does the SNP overlap a coding region in the genome annotation?

• The type of SNP.

– substitutions vs. indels

10.6 SnpEff

We will be using SnpEff232 to annotate our identified variants. The tool will tell us on to which genes we
should focus further analyses.

10.6.1 Installing software

Tools we are going to use in this section and how to install them if you not have done it yet.

activate the env
conda activate ngs

Install these tools into the conda environment
if not already installed
conda install snpeff
conda install genometools-genometools

Make a directory for the results (in your analysis directory) and change into the directory:

mkdir voi

change into the directory
cd voi

10.6.2 Prepare SnpEff database

We need to create our own config-file for SnpEff233. Where is the snpEff.config:

find ~ -name snpEff.config
/home/manager/miniconda3/envs/ngs/share/snpeff-4.3.1m-0/snpEff.config

This will give you the path to the snpEff.config. It might be looking a bit different then the one shown
here, depending on the version of SnpEff234 that is installed.

Make a local copy of the snpEff.config and then edit it with an editor of your choice:
232 http://snpeff.sourceforge.net/index.html
233 http://snpeff.sourceforge.net/index.html
234 http://snpeff.sourceforge.net/index.html

10.5. General comments for identifying variants-of-interest 69

http://snpeff.sourceforge.net/index.html
http://snpeff.sourceforge.net/index.html
http://snpeff.sourceforge.net/index.html

Computational Genomics Tutorial, Release 2019.03

cp /home/manager/miniconda3/envs/ngs/share/snpeff-4.3.1m-0/snpEff.config .
nano snpEff.config

Make sure the data directory path in the snpEff.config looks like this:

data.dir = ./data/

There is a section with databases, which starts like this:

#---
Databases & Genomes
#
One entry per genome version.
#
For genome version 'ZZZ' the entries look like
ZZZ.genome : Real name for ZZZ (e.g. 'Human')
ZZZ.reference : [Optional] Comma separated list of URL to site/s Where information␣
→˓for building ZZZ database was extracted.
ZZZ.chrName.codonTable : [Optional] Define codon table used for chromosome 'chrName' (Default:
→˓'codon.Standard')
#
#---

Add the following two lines in the database section underneath these header lines:

my yeast genome
yeastanc.genome : WildYeastAnc

Now, we need to create a local data folder called ./data/yeastanc.

create folders
mkdir -p ./data/yeastanc

Copy our genome assembly to the newly created data folder. The name needs to be sequences.fa or
yeastanc.fa:

cp ../assembly/spades_final/scaffolds.fasta ./data/yeastanc/sequences.fa
gzip ./data/yeastanc/sequences.fa

Copy our genome annotation to the data folder. The name needs to be genes.gff (or genes.gtf for
gtf-files).

cp ../annotation/your_new_fungus.gff ./data/yeastanc/genes.gff
gzip ./data/yeastanc/genes.gff

Now we can build a new SnpEff235 database:

snpEff build -c snpEff.config -gff3 -v yeastanc > snpEff.stdout 2> snpEff.stderr

Note: Should this fail, due to gff-format of the annotation, we can try to convert the gff to gtf:

using genometools
gt gff3_to_gtf ../annotation/your_new_fungus.gff -o ./data/yeastanc/genes.gtf
gzip ./data/yeastanc/genes.gtf

Now, we can use the gtf annotation top build the database:

235 http://snpeff.sourceforge.net/index.html

70 Chapter 10. Variants-of-interest

http://snpeff.sourceforge.net/index.html

Computational Genomics Tutorial, Release 2019.03

snpEff build -c snpEff.config -gtf22 -v yeastanc > snpEff.stdout 2> snpEff.stderr

10.6.3 SNP annotation

Now we can use our new SnpEff236 database to annotate some variants, e.g.:

snpEff -c snpEff.config yeastanc ../variants/evolved-6.freebayes.filtered.vcf.gz > evolved-6.
→˓freebayes.filtered.anno.vcf

SnpEff237 adds ANN fields to the vcf-file entries that explain the effect of the variant.

Note: If you are unable to do the annotation, you can download an annotated vcf-file from Downloads
(page 77).

10.6.4 Example

Lets look at one entry from the original vcf-file and the annotated one. We are only interested in the 8th
column, which contains information regarding the variant. SnpEff238 will add fields here :

evolved-6.freebayes.filtered.vcf (the original), column 8
AB=0.5;ABP=3.0103;AC=1;AF=0.5;AN=2;AO=56;CIGAR=1X;DP=112;DPB=112;DPRA=0;EPP=3.16541;EPPR=3.16541;
→˓GTI=0;LEN=1;MEANALT=1;MQM=42;MQMR=42;NS=1;NUMALT=1;ODDS=331.872;PAIRED=1;PAIREDR=1;PAO=0;PQA=0;
→˓PQR=0;PRO=0;QA=2128;QR=2154;RO=56;RPL=35;RPP=10.6105;RPPR=3.63072;RPR=21;RUN=1;SAF=30;SAP=3.63072;
→˓SAR=26;SRF=31;SRP=4.40625;SRR=25;TYPE=snp

evolved-6.freebayes.filtered.anno.vcf, column 8
AB=0.5;ABP=3.0103;AC=1;AF=0.5;AN=2;AO=56;CIGAR=1X;DP=112;DPB=112;DPRA=0;EPP=3.16541;EPPR=3.16541;
→˓GTI=0;LEN=1;MEANALT=1;MQM=42;MQMR=42;NS=1;NUMALT=1;ODDS=331.872;PAIRED=1;PAIREDR=1;PAO=0;PQA=0;
→˓PQR=0;PRO=0;QA=2128;QR=2154;RO=56;RPL=35;RPP=10.6105;RPPR=3.63072;RPR=21;RUN=1;SAF=30;SAP=3.63072;
→˓SAR=26;SRF=31;SRP=4.40625;SRR=25;TYPE=snp;ANN=T|missense_variant|MODERATE|CDS_NODE_40_length_1292_
→˓cov_29.5267_1_1292|GENE_CDS_NODE_40_length_1292_cov_29.5267_1_1292|transcript|TRANSCRIPT_CDS_NODE_
→˓40_length_1292_cov_29.5267_1_1292|protein_coding|1/1|c.664T>A|p.Ser222Thr|664/1292|664/1292|222/
→˓429||WARNING_TRANSCRIPT_INCOMPLETE,T|intragenic_variant|MODIFIER|GENE_NODE_40_length_1292_cov_29.
→˓5267_1_1292|GENE_NODE_40_length_1292_cov_29.5267_1_1292|gene_variant|GENE_NODE_40_length_1292_cov_
→˓29.5267_1_1292|||n.629A>T||||||

When expecting the second entry, we find that SnpEff239 added annotation information starting with
ANN=T|missense_variant|.... If we look a bit more closely we find that the variant results in a amino
acid change from a threonine to a serine (c.664T>A|p.Ser222Thr). The codon for serine is TCN and for
threonine is ACN, so the variant in the first nucleotide of the codon made the amino acid change.

A quick protein BLAST240 of the CDS sequence where the variant was found (extracted from the genes.
gff.gz) shows that the closest hit is a translation elongation factor from a species called Candida dublin-
iensis241 another fungi.

236 http://snpeff.sourceforge.net/index.html
237 http://snpeff.sourceforge.net/index.html
238 http://snpeff.sourceforge.net/index.html
239 http://snpeff.sourceforge.net/index.html
240 https://blast.ncbi.nlm.nih.gov/Blast.cgi
241 https://en.wikipedia.org/wiki/Candida_dubliniensis
242 https://blast.ncbi.nlm.nih.gov/Blast.cgi

10.6. SnpEff 71

http://snpeff.sourceforge.net/index.html
http://snpeff.sourceforge.net/index.html
http://snpeff.sourceforge.net/index.html
http://snpeff.sourceforge.net/index.html
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://en.wikipedia.org/wiki/Candida_dubliniensis
https://en.wikipedia.org/wiki/Candida_dubliniensis

Computational Genomics Tutorial, Release 2019.03

Fig. 10.2: Results of a BLAST242 search of the CDS.

72 Chapter 10. Variants-of-interest

https://blast.ncbi.nlm.nih.gov/Blast.cgi

CHAPTER

ELEVEN

QUICK COMMAND REFERENCE

11.1 Shell commands

Where in the directory tree am I?
pwd

List the documents and sub-directories in the current directory
ls

a bit nicer listing with more information
ls -laF

Change into your home directory
cd ~

Change back into the last directory
cd -

Change one directory up in the tree
cd ..

Change explicitly into a directory "temp"
cd temp

Quickly show content of a file "temp.txt"
exist the view with "q", navigate line up and down with "k" and "j"
less temp.text

Show the beginning of a file "temp.txt"
head temp.txt

Show the end of a file "temp.txt"
tail temp.txt

11.2 General conda commands

To update all packages
conda update --all --yes

List all packages installed
conda list [-n env]

conda list environments
conda env list

(continues on next page)

73

Computational Genomics Tutorial, Release 2019.03

(continued from previous page)

create new env
conda create -n [name] package [package] ...

activate env
conda activate [name]

deavtivate env
conda deactivate

74 Chapter 11. Quick command reference

CHAPTER

TWELVE

CODING SOLUTIONS

12.1 QC

12.1.1 Code: Sickle

run sickle like this on the ancestor:
sickle pe -g -t sanger -f data/ancestor-R1.fastq.gz -r data/ancestor-R2.fastq.gz -o trimmed/
→˓ancestor-R1.trimmed.fastq.gz -p trimmed/ancestor-R2.trimmed.fastq.gz -s trimmed/ancestor-singles.
→˓fastq.gz

run the evolved samples through sickle
sickle pe -g -t sanger -f data/evolved-6-R1.fastq.gz -r data/evolved-6-R2.fastq.gz -o trimmed/
→˓evolved-6-R1.trimmed.fastq.gz -p trimmed/evolved-6-R2.trimmed.fastq.gz -s trimmed/evolved-6-
→˓singles.fastq.gz

12.1.2 Code: FastQC

Create directory:

mkdir trimmed-fastqc

Run FastQC:

fastqc -o trimmed-fastqc trimmed/ancestor-R1.trimmed.fastq.gz trimmed/ancestor-R2.trimmed.fastq.gz␣
→˓trimmed/evolved-6-R1.trimmed.fastq.gz trimmed/evolved-6-R2.trimmed.fastq.gz

Open html webpages:

firefox trimmed-fastqc/*.html

12.2 Assembly

12.2.1 Code: SPAdes assembly (trimmed data)

spades.py -o assembly/spades-150/ -k 21,33,55,77 --careful -1 trimmed/ancestor-R1.trimmed.fastq.gz -
→˓2 trimmed/ancestor-R2.trimmed.fastq.gz

12.2.2 Code: SPAdes assembly (original data)

spades.py -o assembly/spades-original/ -k 21,33,55,77 --careful -1 data/ancestor-R1.fastq.gz -2␣
→˓data/ancestor-R2.fastq.gz

75

Computational Genomics Tutorial, Release 2019.03

12.3 Mapping

12.3.1 Code: Bowtie2 indexing

Build the index:

bowtie2-build assembly/spades_final/scaffolds.fasta assembly/spades_final/scaffolds

12.3.2 Code: Bowtie2 mapping

Map to the genome. Use a max fragemnt length of 1000 bp:

bowtie2 -X 1000 -x assembly/spades_final/scaffolds -1 trimmed/evolved-6-R1.trimmed.fsatq.gz -2␣
→˓trimmed/evolved-6-R2.trimmed.fastq.gz -S mappings/evolved-6.sam

12.3.3 Code: BWA indexing

Index the genome assembly:

bwa index assembly/spades_final/scaffolds.fasta

12.3.4 Code: BWA mapping

Run bwa mem:

trimmed data
bwa mem assembly/spades_final/scaffolds.fasta trimmed/evolved-6-R1.trimmed.fastq.gz trimmed/evolved-
→˓6-R2.trimmed.fastq.gz > mappings/evolved-6.sam

raw data
bwa mem assembly/spades_final/scaffolds.fasta data/evolved-6-R1.fastq.gz data/evolved-6-R2.fastq.gz␣
→˓> mappings/evolved-6.raw.sam

76 Chapter 12. Coding solutions

CHAPTER

THIRTEEN

DOWNLOADS

Warning: Since 2020, none of the internal links are functioning. Please use the Dropbox links.

13.1 Tools

• Miniconda installer [EXTERNAL243]

• Minikraken database [EXTERNAL244]

• Centrifuge database [EXTERNAL245]

• Krona taxonomy database [INTERNAL246 | DROPBOX247]

• SolexaQA++ [EXTERNAL248 | INTERNAL249 | DROPBOX250]

• BUSCO Saccharomycetales_odb9 database [EXTERNAL251 | INTERNAL252 | DROPBOX253]

• IGV [EXTERNAL254 | INTERNAL255 | DROPBOX256]

• RAxML-NG [EXTERNAL257 | INTERNAL258 | DROPBOX259]

13.2 Data

• Quality control (page 9): Raw data-set [INTERNAL260 | DROPBOX261]

• Quality control (page 9): Trimmed data-set [INTERNAL262 | DROPBOX263]

243 https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
244 ftp://ftp.ccb.jhu.edu/pub/data/kraken2_dbs/minikraken2_v2_8GB_201904_UPDATE.tgz
245 ftp://ftp.ccb.jhu.edu/pub/infphilo/centrifuge/data/p_compressed+h+v.tar.gz
246 http://compbio.massey.ac.nz/data/203341/taxonomy.tab.gz
247 https://www.dropbox.com/s/cwf1qc5zyq65yvn/taxonomy.tab.gz?dl=0
248 https://downloads.sourceforge.net/project/solexaqa/src/SolexaQA%2B%2B_v3.1.7.1.zip?r=https%3A%2F%2Fsourceforge.

net%2Fprojects%2Fsolexaqa%2Ffiles%2F&ts=1495062885&use_mirror=iweb
249 http://compbio.massey.ac.nz/data/203341/SolexaQA.tar.gz
250 https://www.dropbox.com/s/r9a7hg0tlwe6pk4/SolexaQA.tar.gz?dl=0
251 http://busco.ezlab.org/datasets/saccharomycetales_odb9.tar.gz
252 http://compbio.massey.ac.nz/data/203341/saccharomycetales_odb9.tar.gz
253 https://www.dropbox.com/s/7ow5yi6s5a0ente/saccharomycetales_odb9.tar.gz?dl=0
254 http://data.broadinstitute.org/igv/projects/downloads/IGV_2.3.92.zip
255 http://compbio.massey.ac.nz/data/203341/IGV_2.3.92.zip
256 https://www.dropbox.com/s/bpucaolxhwf78le/IGV_2.3.92.zip?dl=0
257 https://github.com/amkozlov/raxml-ng/releases/download/0.3.0/raxml-ng_v0.3.0b_linux_x86_64.zip
258 http://compbio.massey.ac.nz/data/203341/raxml-ng_v0.3.0b_linux_x86_64.zip
259 https://www.dropbox.com/s/iliws53ri5z4y69/raxml-ng_v0.3.0b_linux_x86_64.zip?dl=0
260 http://compbio.massey.ac.nz/data/203341/data.tar.gz
261 https://www.dropbox.com/s/70gcfqzrqugwcn5/data.tar.gz?dl=0
262 http://compbio.massey.ac.nz/data/203341/trimmed.tar.gz
263 https://www.dropbox.com/s/o6ioadoxfppbjrv/trimmed.tar.gz?dl=0

77

https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
ftp://ftp.ccb.jhu.edu/pub/data/kraken2_dbs/minikraken2_v2_8GB_201904_UPDATE.tgz
ftp://ftp.ccb.jhu.edu/pub/infphilo/centrifuge/data/p_compressed+h+v.tar.gz
http://compbio.massey.ac.nz/data/203341/taxonomy.tab.gz
https://www.dropbox.com/s/cwf1qc5zyq65yvn/taxonomy.tab.gz?dl=0
https://downloads.sourceforge.net/project/solexaqa/src/SolexaQA%2B%2B_v3.1.7.1.zip?r=https%3A%2F%2Fsourceforge.net%2Fprojects%2Fsolexaqa%2Ffiles%2F&ts=1495062885&use_mirror=iweb
http://compbio.massey.ac.nz/data/203341/SolexaQA.tar.gz
https://www.dropbox.com/s/r9a7hg0tlwe6pk4/SolexaQA.tar.gz?dl=0
http://busco.ezlab.org/datasets/saccharomycetales_odb9.tar.gz
http://compbio.massey.ac.nz/data/203341/saccharomycetales_odb9.tar.gz
https://www.dropbox.com/s/7ow5yi6s5a0ente/saccharomycetales_odb9.tar.gz?dl=0
http://data.broadinstitute.org/igv/projects/downloads/IGV_2.3.92.zip
http://compbio.massey.ac.nz/data/203341/IGV_2.3.92.zip
https://www.dropbox.com/s/bpucaolxhwf78le/IGV_2.3.92.zip?dl=0
https://github.com/amkozlov/raxml-ng/releases/download/0.3.0/raxml-ng_v0.3.0b_linux_x86_64.zip
http://compbio.massey.ac.nz/data/203341/raxml-ng_v0.3.0b_linux_x86_64.zip
https://www.dropbox.com/s/iliws53ri5z4y69/raxml-ng_v0.3.0b_linux_x86_64.zip?dl=0
http://compbio.massey.ac.nz/data/203341/data.tar.gz
https://www.dropbox.com/s/70gcfqzrqugwcn5/data.tar.gz?dl=0
http://compbio.massey.ac.nz/data/203341/trimmed.tar.gz
https://www.dropbox.com/s/o6ioadoxfppbjrv/trimmed.tar.gz?dl=0

Computational Genomics Tutorial, Release 2019.03

• Genome assembly (page 19): Assembled data-set [INTERNAL264 | DROPBOX265]

• Read mapping (page 25): Mapping index (bowtie2) [INTERNAL266 | DROPBOX267]

• Read mapping (page 25): Mapping index (bwa) [INTERNAL268 | DROPBOX269]

• Read mapping (page 25): Mapped data [INTERNAL270 | DROPBOX271]

• Genome annotation (page 57): GFF annotation file [INTERNAL272 | DROPBOX273]

• Orthology and Phylogeny (page 63): S. cerevisiase TEF2 gene file [INTERNAL274 | DROPBOX275]

• Orthology and Phylogeny (page 63): BLAST file [INTERNAL276 | DROPBOX277]

• Variants-of-interest (page 67): SnpEff annotated vcf-file [INTERNAL278 | DROPBOX279]

264 http://compbio.massey.ac.nz/data/203341/assembly.tar.gz
265 https://www.dropbox.com/s/vlyn2fxgkiml5m8/assembly.tar.gz?dl=0
266 http://compbio.massey.ac.nz/data/203341/bowtie2-index.tar.gz
267 https://www.dropbox.com/s/dcbdsxl5bjhmif8/bowtie2-index.tar.gz?dl=0
268 http://compbio.massey.ac.nz/data/203341/bwa-index.tar.gz
269 https://www.dropbox.com/s/yidw27u56iast9z/bwa-index.tar.gz?dl=0
270 http://compbio.massey.ac.nz/data/203341/evolved-6.sorted.dedup.bam
271 https://www.dropbox.com/s/k1qn63rwnojhmrz/evolved-6.sorted.dedup.bam?dl=0
272 http://compbio.massey.ac.nz/data/203341/your_new_fungus.gff.gz
273 https://www.dropbox.com/s/6bo9g8h3q6h1x8x/your_new_fungus.gff.gz?dl=0
274 http://compbio.massey.ac.nz/data/203341/s_cerev_tef2.fas
275 https://www.dropbox.com/s/ooxl2q0vp0bzmq3/s_cerev_tef2.fas?dl=0
276 http://compbio.massey.ac.nz/data/203341/blast_u.fas
277 https://www.dropbox.com/s/ul4dzx44lfoewzx/blast_u.fas?dl=0
278 http://compbio.massey.ac.nz/data/203341/evolved-6.freebayes.filtered.anno.vcf
279 https://www.dropbox.com/s/67m45v5fghdh0d3/evolved-6.freebayes.filtered.anno.vcf?dl=0

78 Chapter 13. Downloads

http://compbio.massey.ac.nz/data/203341/assembly.tar.gz
https://www.dropbox.com/s/vlyn2fxgkiml5m8/assembly.tar.gz?dl=0
http://compbio.massey.ac.nz/data/203341/bowtie2-index.tar.gz
https://www.dropbox.com/s/dcbdsxl5bjhmif8/bowtie2-index.tar.gz?dl=0
http://compbio.massey.ac.nz/data/203341/bwa-index.tar.gz
https://www.dropbox.com/s/yidw27u56iast9z/bwa-index.tar.gz?dl=0
http://compbio.massey.ac.nz/data/203341/evolved-6.sorted.dedup.bam
https://www.dropbox.com/s/k1qn63rwnojhmrz/evolved-6.sorted.dedup.bam?dl=0
http://compbio.massey.ac.nz/data/203341/your_new_fungus.gff.gz
https://www.dropbox.com/s/6bo9g8h3q6h1x8x/your_new_fungus.gff.gz?dl=0
http://compbio.massey.ac.nz/data/203341/s_cerev_tef2.fas
https://www.dropbox.com/s/ooxl2q0vp0bzmq3/s_cerev_tef2.fas?dl=0
http://compbio.massey.ac.nz/data/203341/blast_u.fas
https://www.dropbox.com/s/ul4dzx44lfoewzx/blast_u.fas?dl=0
http://compbio.massey.ac.nz/data/203341/evolved-6.freebayes.filtered.anno.vcf
https://www.dropbox.com/s/67m45v5fghdh0d3/evolved-6.freebayes.filtered.anno.vcf?dl=0

LIST OF FIGURES

1.1 The tutorial will follow this workflow. 4

3.1 The part of the workflow we will work on in this section marked in red. 10
3.2 Illustration of single-end (SE) versus paired-end (PE) sequencing. 11
3.3 Quality score across bases. 16
3.4 Quality per tile. 17
3.5 GC distribution over all sequences. 18

4.1 The part of the workflow we will work on in this section marked in red. 20

5.1 The part of the workflow we will work on in this section marked in red. 26
5.2 A example coverage plot for a contig with highlighted in red regions with a coverage

below 20 reads. 33

6.1 The part of the workflow we will work on in this section marked in red. 38
6.2 Example of an Krona output webpage. 46

7.1 The part of the workflow we will work on in this section marked in red. 50
7.2 Example of plot-vcfstats output. 54

8.1 The part of the workflow we will work on in this section marked in red. 58

10.1 The part of the workflow we will work on in this section marked in red. 68
10.2 Results of a BLAST search of the CDS. 72

79

https://blast.ncbi.nlm.nih.gov/Blast.cgi

Computational Genomics Tutorial, Release 2019.03

80 List of Figures

LIST OF TABLES

5.1 The sam-file format fields. 30

7.1 The vcf-file format fields. 53

81

Computational Genomics Tutorial, Release 2019.03

82 List of Tables

BIBLIOGRAPHY

[KAWECKI2012] Kawecki TJ et al. Experimental evolution. Trends in Ecology and Evolution (2012)
27:105

[ZEYL2006] Zeyl C. Experimental evolution with yeast. FEMS Yeast Res, 2006, 685–6916

[GLENN2011] Glenn T. Field guide to next-generation DNA sequencers. Molecular Ecology Resources
(2011) 11, 759–769 doi: 10.1111/j.1755-0998.2011.03024.x39

[KIRCHNER2014] Kirchner et al. Addressing challenges in the production and analysis of Illumina se-
quencing data. BMC Genomics (2011) 12:38240

[MUKHERJEE2015] Mukherjee S, Huntemann M, Ivanova N, Kyrpides NC and Pati A. Large-scale con-
tamination of microbial isolate genomes by Illumina PhiX control. Standards in Genomic
Sciences, 2015, 10:18. DOI: 10.1186/1944-3277-10-1841

[ROBASKY2014] Robasky et al. The role of replicates for error mitigation in next-generation sequencing.
Nature Reviews Genetics (2014) 15, 56-6242

[ABBAS2014] Abbas MM, Malluhi QM, Balakrishnan P. Assessment of de novo assemblers for draft
genomes: a case study with fungal genomes. BMC Genomics. 2014;15 Suppl 9:S10.65

doi: 10.1186/1471-2164-15-S9-S10. Epub 2014 Dec 8.

[COMPEAU2011] Compeau PE, Pevzner PA, Tesler G. How to apply de Bruijn graphs to genome assem-
bly. Nat Biotechnol. 2011 Nov 8;29(11):987-9166

[GUREVICH2013] Gurevich A, Saveliev V, Vyahhi N and Tesler G. QUAST: quality assessment tool for
genome assemblies. Bioinformatics 2013, 29(8), 1072-107567

[NAGARAJAN2013] Nagarajan N, Pop M. Sequence assembly demystified. Nat Rev Genet. 2013
Mar;14(3):157-6768

[SALZBERG2012] Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, Treangen TJ, Schatz
MC, Delcher AL, Roberts M, Marçais G, Pop M, Yorke JA. GAGE: A critical evaluation of
genome assemblies and assembly algorithms. Genome Res. 2012 Mar;22(3):557-6769

[WICK2015] Wick RR, Schultz MB, Zobel J and Holt KE. Bandage: interactive visualization of de novo
genome assemblies. Bioinformatics 2015, 10.1093/bioinformatics/btv38370

5 http://dx.doi.org/10.1016/j.tree.2012.06.001
6 http://doi.org/10.1111/j.1567-1364.2006.00061.x

39 http://doi.org/10.1111/j.1755-0998.2011.03024.x
40 http://doi.org/10.1186/1471-2164-12-382
41 http://doi.org/10.1186/1944-3277-10-18
42 http://doi.org/10.1038/nrg3655
65 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290589/
66 http://dx.doi.org/10.1038/nbt.2023
67 http://bioinformatics.oxfordjournals.org/content/29/8/1072
68 http://dx.doi.org/10.1038/nrg3367
69 http://genome.cshlp.org/content/22/3/557.full?sid=59ea80f7-b408-4a38-9888-3737bc670876
70 http://bioinformatics.oxfordjournals.org/content/early/2015/07/11/bioinformatics.btv383.long

83

http://dx.doi.org/10.1016/j.tree.2012.06.001
http://dx.doi.org/10.1016/j.tree.2012.06.001
http://doi.org/10.1111/j.1567-1364.2006.00061.x
http://doi.org/10.1111/j.1755-0998.2011.03024.x
http://doi.org/10.1111/j.1755-0998.2011.03024.x
http://doi.org/10.1186/1471-2164-12-382
http://doi.org/10.1186/1944-3277-10-18
http://doi.org/10.1186/1944-3277-10-18
http://doi.org/10.1038/nrg3655
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290589/
http://dx.doi.org/10.1038/nbt.2023
http://bioinformatics.oxfordjournals.org/content/29/8/1072
http://dx.doi.org/10.1038/nrg3367
http://dx.doi.org/10.1038/nrg3367
http://genome.cshlp.org/content/22/3/557.full?sid=59ea80f7-b408-4a38-9888-3737bc670876
http://bioinformatics.oxfordjournals.org/content/early/2015/07/11/bioinformatics.btv383.long

Computational Genomics Tutorial, Release 2019.03

[TRAPNELL2009] Trapnell C, Salzberg SL. How to map billions of short reads onto genomes. Nat
Biotechnol. (2009) 27(5):455-7. doi: 10.1038/nbt0509-455.118

[LI2009] Li H, Durbin R. (2009). Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics. 25 (14): 1754–1760.119

[OKO2015] Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality
control for high-throughput sequencing data. Bioinformatics (2015), 32, 2:292–294.120

[KIM2017] Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification
of metagenomic sequences. Genome Res. 2016 Dec;26(12):1721-1729184

[LU2017] Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in
metagenomics data. PeerJ Computer Science, 2017, 3:e104, doi:10.7717/peerj-cs.104185

[ONDOV2011] Ondov BD, Bergman NH, and Phillippy AM. Interactive metagenomic visualization in a
Web browser. BMC Bioinformatics, 2011, 12(1):385.186

[WOOD2014] Wood DE and Steven L Salzberg SL. Kraken: ultrafast metagenomic sequence classifica-
tion using exact alignments. Genome Biology, 2014, 15:R46. DOI: 10.1186/gb-2014-15-
3-r46187.

[NIELSEN2011] Nielsen R, Paul JS, Albrechtsen A, Song YS. Genotype and SNP calling from next-
generation sequencing data. Nat Rev Genetics, 2011, 12:433-451199

[OLSEN2015] Olsen ND et al. Best practices for evaluating single nucleotide variant calling methods for
microbial genomics. Front. Genet., 2015, 6:235.200

[SIMAO2015] Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV and Zdobnov EM. BUSCO: assess-
ing genome assembly and annotation completeness with single-copy orthologs. Bioinfor-
matics, 2015, Oct 1;31(19):3210-2214

[STANKE2005] Stanke M and Morgenstern B. AUGUSTUS: a web server for gene prediction in eukary-
otes that allows user-defined constraints. Nucleic Acids Res, 2005, 33(Web Server issue):
W465–W467.215

118 http://doi.org/10.1038/nbt0509-455
119 https://doi.org/10.1093%2Fbioinformatics%2Fbtp324
120 https://doi.org/10.1093/bioinformatics/btv566
184 https://www.ncbi.nlm.nih.gov/pubmed/27852649
185 https://peerj.com/articles/cs-104/
186 http://www.ncbi.nlm.nih.gov/pubmed/21961884
187 http://doi.org/10.1186/gb-2014-15-3-r46
199 http://doi.org/10.1038/nrg2986
200 https://doi.org/10.3389/fgene.2015.00235
214 http://doi.org/10.1093/bioinformatics/btv351
215 https://dx.doi.org/10.1093/nar/gki458

84 Bibliography

http://doi.org/10.1038/nbt0509-455
http://doi.org/10.1038/nbt0509-455
https://doi.org/10.1093%2Fbioinformatics%2Fbtp324
https://doi.org/10.1093/bioinformatics/btv566
https://www.ncbi.nlm.nih.gov/pubmed/27852649
https://peerj.com/articles/cs-104/
http://www.ncbi.nlm.nih.gov/pubmed/21961884
http://doi.org/10.1186/gb-2014-15-3-r46
http://doi.org/10.1186/gb-2014-15-3-r46
http://doi.org/10.1038/nrg2986
https://doi.org/10.3389/fgene.2015.00235
http://doi.org/10.1093/bioinformatics/btv351
http://doi.org/10.1093/bioinformatics/btv351
https://dx.doi.org/10.1093/nar/gki458
https://dx.doi.org/10.1093/nar/gki458

	Introduction
	The workflow
	Learning outcomes

	Tool installation
	Install the conda package manager
	Create environments
	Install software
	General conda commands

	Quality control
	Preface
	Overview
	Learning outcomes
	The data
	The fastq file format
	The QC process
	PhiX genome
	Adapter trimming
	Sickle for dynamic trimming
	Quality assessment of sequencing reads (FastQC)

	Genome assembly
	Preface
	Overview
	Learning outcomes
	Before we start
	Creating a genome assembly
	Assembly quality assessment
	Compare the untrimmed data
	Assemblathon
	Further reading
	Web links

	Read mapping
	Preface
	Overview
	Learning outcomes
	Before we start
	Mapping sequence reads to a reference genome
	BWA
	Bowtie2 (alternative to BWA)
	The sam mapping file-format
	Mapping post-processing
	Mapping statistics
	Sub-selecting reads

	Taxonomic investigation
	Preface
	Overview
	Before we start
	Kraken2
	Centrifuge
	Visualisation (Krona)

	Variant calling
	Preface
	Overview
	Learning outcomes
	Before we start
	Installing necessary software
	Preprocessing
	Calling variants
	Post-processing

	Genome annotation
	Preface
	Overview
	Learning outcomes
	Before we start
	Installing the software
	Assessment of orthologue presence and absence
	Annotation
	Interactive viewing
	Installing IGV
	Assessment of orthologue presence and absence (2)

	Orthology and Phylogeny
	Preface
	Learning outcomes
	Before we start
	Installing the software
	Finding orthologues using BLAST
	Performing an alignment
	Building a phylogeny
	Visualizing the phylogeny

	Variants-of-interest
	Preface
	Overview
	Learning outcomes
	Before we start
	General comments for identifying variants-of-interest
	SnpEff

	Quick command reference
	Shell commands
	General conda commands

	Coding solutions
	QC
	Assembly
	Mapping

	Downloads
	Tools
	Data

	Bibliography

